超细晶粒对纳晶材料断裂韧性的影响

周剑秋, 韩雪平

周剑秋, 韩雪平. 超细晶粒对纳晶材料断裂韧性的影响[J]. 工程力学, 2014, 31(7): 229-233. DOI: 10.6052/j.issn.1000-4750.2012.09.0667
引用本文: 周剑秋, 韩雪平. 超细晶粒对纳晶材料断裂韧性的影响[J]. 工程力学, 2014, 31(7): 229-233. DOI: 10.6052/j.issn.1000-4750.2012.09.0667
ZHOU Jian-qiu, HAN Xue-ping. EFFECTS OF ULTRAFINE GRAINS ON FRACTURE TOUGHNESS OF NANOCRYSTALLINE MATERIALS[J]. Engineering Mechanics, 2014, 31(7): 229-233. DOI: 10.6052/j.issn.1000-4750.2012.09.0667
Citation: ZHOU Jian-qiu, HAN Xue-ping. EFFECTS OF ULTRAFINE GRAINS ON FRACTURE TOUGHNESS OF NANOCRYSTALLINE MATERIALS[J]. Engineering Mechanics, 2014, 31(7): 229-233. DOI: 10.6052/j.issn.1000-4750.2012.09.0667

超细晶粒对纳晶材料断裂韧性的影响

基金项目: 国家自然科学基金项目(11272143); 湖北省优秀中青年人才项目(Q20111501); 霍英东青年教师基金项目(101005)
详细信息
    作者简介:

    韩雪平(1988―),男,江西人,硕士生,从事纳晶材料力学行为研究(E-mail:xuepinghan@tom.com).

    通讯作者:

    周剑秋(1972―),男,江苏人,教授,博士,博导,从事先进材料力学行为研究(E-mail:yyzjqcc@sohu.com).

EFFECTS OF ULTRAFINE GRAINS ON FRACTURE TOUGHNESS OF NANOCRYSTALLINE MATERIALS

  • 摘要: 为了研究纳米晶体材料的断裂韧性,该文建立了一个包含两种晶粒的材料模型:超细晶粒(2nm~4nm)和普通纳晶晶粒(20nm~100nm)。超细晶粒可以看作普通纳晶晶粒三晶交的组成部分,并称包含超细晶粒的三晶交为超级三晶交,且均匀地分布在普通纳晶的基体中。裂纹尖端的应力集中会引起晶间滑移,晶间滑移又会导致超级三晶交处刃型位错的产生。该文研究了超级三晶交处的位错对临界应力强度因子的影响,结果表明超细晶粒的存在有效地提高了纳米晶体材料的断裂韧性。
    Abstract: In order to study the fracture toughness of nanocrystalline, a material model was proposed. The model contains two types of grains: the ultrafine grains (ranging from 2 nm to 4 nm) and the normal nanograins (ranging from 20 nm to 100 nm). The ultrafine grains could be treated as a part of triple junctions, denoted as super triple junctions, and evenly distributed in the conventional nanocrystalline matrix. In the framework of our model, stress concentration near crack tip initiates intergrain sliding that leads to the generation of edge dislocations at super triple junctions. The effect of dislocation at a super triple junction on the critical intensity factors was studied. The results show that the existence of the ultrafine grains effectively enhances the fracture toughness of nanocrystalline.
  • [1] Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Progress Materials Science, 2006, 51(4): 427―556.
    [2] Dao M, Lu L, Asaro R J, et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J]. Acta Mater, 2007, 55(12): 4041―4065.
    [3] 王兆希, 施惠基. 面外约束对韧性材料的断裂韧度的影响[J]. 工程力学, 2007, 24(11): 19―24.
    Wang Zhaoxi, Shi Huiji. Effect of out-of-plane constraint on ductile fracture toughness [J]. Engineering Mechanics, 2007, 24(11): 19―24. (in Chinese)
    [4] 杨圣奇, 蒋昱州, 温森. 两条断续预制裂纹粗晶大理岩强度参数的研究[J]. 工程力学, 2008, 25(12): 127―134.
    Yang Shengqi, Jiang Yuzhou, Wen Sen. Study on the strength parameters of coarse marble with two pre-existing cracks [J]. Engineering Mechanics, 2008, 25(12) : 127―134. (in Chinese)
    [5] Youssef K M, Scattergood R O, Murty K L, et al. Ultrahigh strength and high ductility of bulk nanocrystalline copper [J]. Applied Physics Letters, 2005, 87(9): 091904-1―091904-3.
    [6] Gleiter H. Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today [J]. Acta Mater, 2008, 56(19): 5875―5893.
    [7] Satta A, Pisanu E, Colombo L, et al. Microstructure evolution at a triple junction in polycrystalline silicon [J]. J Phys Condens Matter, 2002, 14: 13003―13008.
    [8] Trelewicz J R, Schuh C A. The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation [J]. Acta Mater, 2007, 55(17): 5948―5958.
    [9] Bobylev S V, Mukherjee A K, Ovid’ko I A, et al. Effects of intergrain sliding on crack growth in nanocrystalline materials [J]. International Journal of Plasticity, 2010, 26(11): 1629―1644.
    [10] Fedorov A A, Gutkin M Y, Ovid’ko I A. Transformations of grain boundary dislocation pile-ups in nano-and polycrystalline materials [J]. Acta Mater, 2003, 51(4): 887―898.
    [11] Bobylev S V, Mukherjee A K, Ovid’ko I A. Emission of partial dislocations from amorphous intergranular boundaries in deformed nanocrystalline ceramics [J]. Scripta Mater, 2009, 60(1): 36―39.
    [12] Szlufarska I, Nakano A, Vashista P A Crossover in the mechanical response of nanocrystalline ceramics [J]. Science, 2005, 309: 911―914.
    [13] Wang Y, Li J, Hamza A V, et al. Ductile crystalline-amorphous nanolaminates [J]. Proceedings of the National Academy of Sciences, 2007, 104: 11155―11160.
    [14] Yang Z Y, Lu Z X, Zhao Y P. Shape effects on the yield stress and deformation of silicon nanowires: A molecular dynamics simulation [J]. Journal of Applied Physics, 2009, 106: 023537-1―023537-6.
    [15] Asaro R J, Krysl P, Kad B. Deformation mechanism transitions in nanoscale fcc metals [J]. Philos Mag Lett, 2003, 83(12): 733―743.
    [16] Zhu B, Asaro R J, Krysl P, et al. Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals [J]. Acta Mater, 2005, 53(18): 4825―4838.
    [17] Zhang T Y, Li J C M. Image forces and shielding effects of an edge dislocation near a finite length crack [J]. Acta Metall Mater, 1991, 39(11): 2739―2744.
  • 期刊类型引用(5)

    1. 闫西峰,郝际平,赵衍刚. 考虑有效混凝土强度的中空夹层钢管混凝土短柱轴压性能研究. 工程力学. 2024(11): 145-156 . 本站查看
    2. 张颖,赵晖,王蕊,陈鹏. 外包不锈钢管中空夹层钢管混凝土压弯构件N_u-M_u相关曲线研究. 工程力学. 2023(02): 124-134 . 本站查看
    3. 吕晓,赵瑞丽,舒赣平,张鑫,杜二峰,王文明. 中空夹层圆钢管超高强混凝土短柱火灾后承载性能试验研究. 西安建筑科技大学学报(自然科学版). 2022(04): 543-550 . 百度学术
    4. 张世钧,邹昀,王城泉,吴艺超,陈明. 横肋波纹钢板-方钢管混凝土组合柱双向偏压力学性能研究及承载力计算. 工程力学. 2021(06): 81-90 . 本站查看
    5. 李佳奇,王蕊,赵晖,王会文. 外包不锈钢中空夹层钢管混凝土柱耐火性能研究. 工程力学. 2020(10): 125-133 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  285
  • HTML全文浏览量:  18
  • PDF下载量:  72
  • 被引次数: 14
出版历程
  • 收稿日期:  2012-09-12
  • 修回日期:  2012-11-15
  • 刊出日期:  2014-07-24

目录

    /

    返回文章
    返回