基于拱梁分载法的高薄拱坝水平拱圈曲折稳定评价

李慧, 王正中, 王羿

李慧, 王正中, 王羿. 基于拱梁分载法的高薄拱坝水平拱圈曲折稳定评价[J]. 工程力学, 2014, 31(5): 145-150. DOI: 10.6052/j.issn.1000-4750.2012.12.0948
引用本文: 李慧, 王正中, 王羿. 基于拱梁分载法的高薄拱坝水平拱圈曲折稳定评价[J]. 工程力学, 2014, 31(5): 145-150. DOI: 10.6052/j.issn.1000-4750.2012.12.0948
LI Hui, WANG Zheng-zhong, WANG Yi. BUCKLING STABILITY ANALYSIS OF HORIZONTAL ARCH RINGS OF HIGH-THIN ARCH DAMS BASED ON ARCH-CANTILEVER METHOD[J]. Engineering Mechanics, 2014, 31(5): 145-150. DOI: 10.6052/j.issn.1000-4750.2012.12.0948
Citation: LI Hui, WANG Zheng-zhong, WANG Yi. BUCKLING STABILITY ANALYSIS OF HORIZONTAL ARCH RINGS OF HIGH-THIN ARCH DAMS BASED ON ARCH-CANTILEVER METHOD[J]. Engineering Mechanics, 2014, 31(5): 145-150. DOI: 10.6052/j.issn.1000-4750.2012.12.0948

基于拱梁分载法的高薄拱坝水平拱圈曲折稳定评价

基金项目: 国家科技支撑计划项目(2012BAD10B02)
详细信息
    作者简介:

    李慧(1987-), 女, 黑龙江牡丹江人, 硕士生, 从事水工结构安全评价研究 E-mail:lihui2210@yeah.net);王羿(1987-), 男, 山西长治人, 硕士生, 从事水工结构安全评价研究 E-mail:wangyimutou@126.com.

    通讯作者:

    王正中 (1963-), 男, 陕西彬县人, 教授, 学士, 博导, 从事水工水力学研究 E-mail: wangzz0910@163.com

  • 中图分类号: TV642.4

BUCKLING STABILITY ANALYSIS OF HORIZONTAL ARCH RINGS OF HIGH-THIN ARCH DAMS BASED ON ARCH-CANTILEVER METHOD

  • 摘要: 该文针对深山峡谷中高拱坝半径较小且截面尺寸较大, 曲率和剪切变形对临界荷载的影响较为明显的特点, 基于大曲率深拱问题在拱坝中应用的理论和经典的拱梁分载理论, 对《拱坝抗曲折稳定分析再探》中的算例重新校核, 重新定义拱坝水平拱圈的抗曲折稳定系数, 并结合柔度系数绘制两者关系曲线, 更直观的判定水平拱圈的稳定性。结果表明:对于拱坝的中上部, 拱圈起主要承载作用, 拱圈的稳定性较弱, 曲率和剪切变形的影响不明显, 容易发生失稳, 故在校核稳定时应当给予重视;对于中下部, 拱圈的稳定性较强, 但剪切与曲率的影响较为明显, 并且剪切变形的影响大于曲率的影响;高拱坝的柔度系数越大则拱圈曲折失稳范围越大, 柔度系数为10时坝高全范围拱圈将不曲折失稳。
    Abstract: High arch dams in canyon areas are normally featured with small radiuses and large cross-sections, and the curvature and shearing deformation of high arch dams impose great influence on the critical load. Based on the experience in analyzing high arch dams of large curvature and using the arch-cantilever method, this study re-examined the examples in “Further discussions on the stability of arch dams regarding elastic buckling”. The buckling stability factor was reformulated, and its relationship with the slenderness coefficient of high arch dams was derived. Results show for the middle-upper part of high arch dams, arch rings bear a large portion of loads and are vulnerable to collapse. The influence of curvature and shear deformation is insignificant. On the other hand, for the middle-lower part, the stability condition is relatively better. The influence of curvature and shear deformation is noticeable, and that of shear deformation is greater than that of curvature. It is also noted that a bigger slenderness coefficient is associated with a bigger area of bulking instability of arch rings. A slenderness coefficient of 10 signifies no bulking collapse throughout the dam.
  • [1] 黄文熙. 拱坝抗屈折稳定初探[J]. 水利学报, 1995, 9(9): 1-4. Huang Wenxi. Preliminary studies on the stability of arch dam against elastic buckling [J]. Journal of Hydraulic Engineering, 1995, 9(9): 1-4. (in Chinese)
    [2] [2] 王正中, 刘计良. 拱坝抗曲折稳定再探[J]. 工程力学, 2010, 27(6): 147-153. Wang Zhengzhong, Liu Jiliang. Further discussions on the stability of arch dam against elastic buckling [J]. Engineering Mechanics, 2010, 27(6): 147-153. (in Chinese)
    [3] [3] 夏桂云, 李传习, 曾庆元. 大曲率圆弧深拱平面弹性稳定分析[J]. 工程力学, 2008, 25(1): 145-149. Xia Guiyun, Li Chuanxi, Zeng Qingyuan. In-plane elastic buckling analysis of circular arch considering influences of curvature and shear deformation [J]. Engineering Mechanics, 2008, 25(1): 145-149. (in Chinese)
    [4] [4] Lombardi G, Kohlbrein Dam. An unusual solution for an unusual problem [J]. Water Power and Dam Construction, 1991, 6(43): 31-34.
    [5] [5] 朱伯芳. 混凝土拱坝的应力水平系数与安全水平系数[J]. 水利水电技术, 2000, 31(8): 1-3. Zhu Bofang. Stress level coefficient and safety level factor of concrete arch dam [J]. Water Resources and Hydropower Engineering, 2000, 31(8):1-3. (in Chinese)
    [6] [6] Timosheko S P, Gere J M. Theory of elastic stability [M]. New York: McGraw-Hill Book Company Inc, 1961: 278-313.
    [7] [7] 林继镛. 水工建筑物[M]. 北京: 中国水利水电出版社, 2008: 168-173. Lin Jiyong. Hydraulic structure [M]. Beijing: Water Conservancy and Electric Power Press, 2008: 168-173. (in Chinese)
    [8] [8] 刘华丽, 彭辉. 基于多拱梁分载法的高拱坝应力分析[J]. 云南水力发电, 2009, 25(3): 26-29. Liu Huali, Peng Hui. The multiple arch-cantilever safety-base high arch dam stress analysis [J]. Yunnan Water Power. 2009, 25(3): 26-29. (in Chinese)
    [9] [9] 汝乃华, 姜忠胜. 大坝事故与安全[M]. 北京: 中国水利水电出版社, 1995: 53-57. Ru Naihua, Jiang Zhongsheng. Arch dams accident and safety of large dams [M]. Beijing: Water Conservancy and Electric Power Press, 1995: 53-57. (in Chinese)
    [10] [10] 姚栓喜, 李蒲健. 黄河拉西瓦双曲拱坝体型优化设计[C]. 昆明: 水电2006国际研讨会论文集, 2006: 194-205. Yao Shuanxi, Li Pujian. Optimization design of double-curvature arch dam body in laxiwa yellow river [C]. Kunming: International Symposium on Hydroelectric Power in 2006, 2006: 194-205. (in Chinese)
    [11] [11] 周秋景, 张国新. 拱坝极限承载力影响因素及安全评价体系研究[C]. 上海: 第三届全国水工岩石力学学术会议论文集, 2010: 353-356. Zhou Qiujing, Zhang Guoxin. Studies on arch dam of factors affecting the ultimate bearing capacity and safety assessment system [C]. Shanghai: The Third National Academic Conference on Hydraulic Engineering Rock Mechanics Symposium, 2010: 353-356. (in Chinese)
    [12] [12] 黄岩松, 周维垣, 杨若琼, 沈大利. 拉西瓦拱坝稳定性分析和评价[J]. 岩石力学与工程学报, 2006, 25(5): 901-905. Huang Yansong, Zhou Weiyuan, Yang Ruoqiong, Shen Dali. Stability analysis and evaluation of laxiwa arch dam [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 901-905. (in Chinese)
    [13] [13] 黄岩松, 周维垣, 陈新. 拉西瓦双曲拱坝整体稳定分析[J]. 岩石力学和工程学报, 2002, 21(2): 2413-2417. Huang Yansong, Zhou Weiyuan, Chen Xin. Analysis on stability in the large of laxiwa hyperbolic arch dam [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(2): 2413-2417. (in Chinese)
    [14] [14] 姚栓喜, 李蒲健, 雷丽萍. 拉西瓦水电站混凝土双曲拱坝设计[J]. 水力发电, 2007, 33(11): 30-33. Yao Shuanxi, Li Pujian, Lei Liping. Desing of double curvature arch dam of the laxiwa hydroelectric project [J]. Journal of Hydroelectric Engineering, 2007, 33(11): 30-33. (in Chinese)
    [15] [15] 李瓒, 陈飞, 郑健波. 特高拱坝枢纽分析与重点问题研究[M]. 北京: 中国电力出版社, 2004: 57-71, 103-147, 612-638. Li Zan, Chen Fei, Zheng Jianbo. Analysis and studies on project and major technical issues of surper-high arch dams [M]. Beijing: China Electric Power Press, 2004: 57-71, 103-147, 612-638. (in Chinese)
    [16] [16] 任青文, 王伯乐. 关于拱坝柔度系数的讨论[J]. 河海大学学报(自然科学版), 2003, 31(1): 1-4. Ren Qingwen, Wang Bole. Discussion on slenderness coefficient of arch dams [J]. Journal of Hohai University(Natural Sciences), 2003, 31(1): 1-4. (in Chinese)
    [17] [17] 范钦珊, 薛克宗, 王波. 工程力学教程[M]. 北京: 高等教育出版社, 1998: 329-333. Fan Qinshan, Xue Kezong, Wang Bo. Tutorial of engineering mechanics [M]. Beijing: Higher Education Press, 1998: 329-333. (in Chinese)
    [18] [18] DL/T 5346, 混凝土拱坝设计规范[S]. 2006.9. DL/T 5346, Specifications of concrete arch dam design [S]. 2006.9. (in Chinese)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  30
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-12
  • 刊出日期:  2014-05-24

目录

    /

    返回文章
    返回