基于ICM法的传热结构周期性拓扑优化设计

龙凯, 贾娇

龙凯, 贾娇. 基于ICM法的传热结构周期性拓扑优化设计[J]. 工程力学, 2015, 32(5): 227-235. DOI: 10.6052/j.issn.1000-4750.2013.11.1080
引用本文: 龙凯, 贾娇. 基于ICM法的传热结构周期性拓扑优化设计[J]. 工程力学, 2015, 32(5): 227-235. DOI: 10.6052/j.issn.1000-4750.2013.11.1080
LONG Kai, JIA Jiao. PERIODIC TOPOLOGY OPTIMIZATION DESIGN FOR THERMAL CONDUCTIVE STRUCTURE USING ICM METHOD[J]. Engineering Mechanics, 2015, 32(5): 227-235. DOI: 10.6052/j.issn.1000-4750.2013.11.1080
Citation: LONG Kai, JIA Jiao. PERIODIC TOPOLOGY OPTIMIZATION DESIGN FOR THERMAL CONDUCTIVE STRUCTURE USING ICM METHOD[J]. Engineering Mechanics, 2015, 32(5): 227-235. DOI: 10.6052/j.issn.1000-4750.2013.11.1080

基于ICM法的传热结构周期性拓扑优化设计

基金项目: 国家自然科学基金项目(11202078); 北京市自然科学基金项目(3143025); 工程车辆轻量化与可靠性技术湖南省高校重点实验室(长沙理工大学)开放基金项目(2013kfjj01); 中央高校基本科研业务费专项资金项目(2014ZD16)
详细信息
    作者简介:

    贾娇(1984―),女,内蒙古鄂尔多斯人,博士生,主要从事振动噪声分析与控制研究(E-mail: jiajiao_2012@163.com).

    通讯作者:

    龙凯(1978―),男,湖北武汉人,讲师,博士,从事连续体结构拓扑优化理论方法与应用研究(E-mail: longkai1978@163.com).

  • 中图分类号: O343.1

PERIODIC TOPOLOGY OPTIMIZATION DESIGN FOR THERMAL CONDUCTIVE STRUCTURE USING ICM METHOD

  • 摘要: 为了获得复合材料稳态导热性优化微结构构型,基于独立连续映射法,建立了周期性结构拓扑优化模型。在优化模型中,以重量最小化为目标、散热弱度为约束。采用一阶泰勒展开近似表达散热弱度约束函数。基于偏微分方程实施的图像过滤方法消除了棋盘格现象和网格依赖性问题。为了满足周期性约束,设计区域划分为若干相同大小的子区域,散热弱度贡献系数被重新分配。对比分析循环周期数、不同约束载荷工况下的拓扑优化构型。数值算例结果验证提出方法可以有效实现热传导下的复合材料微结构优化设计。
    Abstract: To obtain the optimal topological configuration for thermal conductive microstructures of composite materials, a topological optimization model of the periodic structure is established by the Independent Continuous Mapping method. In this model, minimized weight is taken as the objective and thermal compliance is the constraint condition. The thermal compliance constraint is approximately formulated using a first-order Taylor expansion. The image-filtering method is implemented by a partial differential equation to eliminate checkerboard patterns and mesh-dependence problems. To satisfy the periodic constraint, the designable domain is divided into a certain number of identical subdomains and the contribution coefficients of thermal compliance are redistributed. Optimal topological configurations with different periodic numbers and different loading conditions are compared and analyzed. Numerical results verify the validity of the proposed topology optimization method in designing the microstructures of composite materials for thermal conduction.
  • [1] Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197―224.
    [2] Rozvany RIN. A critical review of established methods of structural topology optimization [J]. Structural and Multidisciplinary Optimization, 2009, 37(3): 217―237.
    [3] Sigmund O, Maute K. Topology optimization approaches [J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1030―1055.
    [4] Deaton J D, Grandhi R V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000 [J]. Structural and Multidisciplinary Optimization, 2014, 49(1): 1―38.
    [5] Guo Xu, Cheng Gengdong. Recent development in structural design and optimization [J]. Acta Mechanica Sinica, 2010, 26(6): 807―823.
    [6] Sigmund O. Materials with prescribed constitutive parameters — an inverse homogenization problem [J]. International Journal of Solids and Structures, 1994, 31(17): 2313―2329.
    [7] Sigmund O, Torquato S. Design of materials with extreme thermal expansion using a three-phase topology optimization method [J]. Journal of the Mechanics and Physics of Solids, 1997, 45(6): 1037―1067.
    [8] 王凤稳, 张卫红, 孙士平, 等. 多相材料传热微结构的多目标优化设计[J]. 力学学报, 2007, 39(5): 708―713. Wang Fengwen, Zhang Weihong, Sun Shiping, et al. Multi-objective design of the multi-phase microstructure for thermal conductivity optimization [J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 708―713. (in Chinese)
    [9] Moses E, Fuchs M B, Ryvkin M. Topological design of modular structures under arbitrary loading [J]. Structural and Multidisciplinary Optimization, 2002, 24(6): 407―417.
    [10] Zhang Weihong, Sun Shiping. Scale-related topology optimization of cellular materials and structures [J]. International Journal for Numerical Methods in Engineering, 2006, 68(9): 993―1011.
    [11] 张卫红, 孙士平. 多孔材料/结构尺度关联的一体化拓扑优化技术[J]. 力学学报, 2006, 38(4): 522―529. Zhang Weihong, Sun Shiping. Integrated design of porous materials and structures with scale-coupled effect [J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 522―529. (in Chinese)
    [12] 张卫红, 汪雷, 孙士平. 基于导热性能的复合材料微结构拓扑优化设计[J]. 航空学报, 2006, 27(6): 1229―1233. Zhang Weihong, Wang Lei, Sun Shiping. Topology optimization for microstructures of composite materials based on thermal conductivity [J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1229―1233. (in Chinese)
    [13] Huang X, Xie Y M. Optimal design of periodic structures using evolutionary topology optimization [J]. Structural and Multidisciplinary Optimization, 2008, 36(6): 597―606.
    [14] Zuo Z H, Xie Y M, Huang X D. Optimal topological design of periodic structures for natural frequencies [J]. Journal of Structural Engineering, 2011, 137(10): 1229―1240.
    [15] Xie Y M, Zuo Z H, Huang X D, et al. Convergence of topological patterns of optimal periodic structures under multiple scales [J]. Structural Optimization, 2012, 46(1): 41―50.
    [16] 阎军, 刘岭, 刘晓峰, 等. 考虑尺寸效应的模块化结构两层级优化设计[J]. 力学学报, 2010, 42(2): 268―274. Yan Jun, Liu Ling, Liu Xiaofeng, et al. Concurrent hierarchical optimization for structures composed of modules considering size effects [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 268―274. (in Chinese)
    [17] Yan Jun, Cheng Geng Dong, Liu Ling. A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials [J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2008, 2(4): 259―266.
    [18] Liu Bin, Yan Jun, Cheng Gengdong. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency [J]. Structural and Multidisciplinary Optimization, 2009, 39(2): 115―132.
    [19] 刘远东, 尹益辉, 郭中泽. 静动态力学条件下多孔金属的材料/结构多级优化设计研究[J]. 中国科学: 技术科学, 2012, 42(10): 1172―1178. Liu Yuandong, Yin Yihui, Guo Zhongze. Static and dynamic design based on hierarchical optimization for materials and structure of porous metals [J]. Sci China Tech Sci, 2012, 42(10): 1172―1178. (in Chinese)
    [20] 刘远东, 尹益辉, 郭中泽. 尺度关联的微结构构型与排布的材料/结构动力学设计[J]. 复合材料学报, 2011, 28(4): 180―184. Liu Yuandong, Yin Yihui, Guo Zhongze. Dynamic design associating materials and structures with scale-couple effect [J]. Acta Material Composite Sinica, 2011, 28(4): 180―184. (in Chinese)
    [21] 隋允康, 叶红玲, 刘建信, 等. 追求根基的结构拓扑优化方法[J]. 工程力学,2008, 25(增刊): 7―19. Sui Yunkang, Ye Hongling, Liu Jianxin, et al. A structural topological optimization method based on exploring conceptual root [J]. Engineering Mechanics, 2008, 25(Suppl): 7―19. (in Chinese)
    [22] 隋允康, 铁军. 结构拓扑优化ICM显式化与抛物型凝聚函数对于应力约束的集成化[J]. 工程力学, 2012, 27(增刊): 124―134. Sui Yunkang, Tie Jun. The ICM explicitation approach to the structural topology optimization and the integrating approach to stress constraints based on the parabolic aggregation function [J]. Engineering Mechanics, 2012, 27(Suppl): 124―134. (in Chinese)
    [23] 隋允康, 宣东海, 尚珍. 连续体结构拓扑优化的高精度逼近ICM方法[J]. 力学学报, 2011, 43(4): 716―724. Sui Yunkang, Xuan Donghai, Shang Zhen. ICM method with high accuracy approximation for topology optimization of continuum structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 716―724. (in Chinese)
    [24] 叶红玲, 沈静娴, 隋允康. 频率约束的三维连续体结构动力拓扑优化设计[J]. 力学学报, 2012, 44(6): 1037―1045. Ye Hongling, Shen Jingxian, Sui Yunkang. Topological optimal design of three-dimensional continuum structures with frequencies constraints based on ICM method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1037―1045. (in Chinese)
    [25] 隋允康, 彭细荣. 结构拓扑优化ICM方法的改善[J]. 力学学报, 2005, 37(2): 190―198. Sui Yunkang, Peng Xirong. The improvement for the ICM method of structural topology optimization [J]. Acta Mechanica Sinica, 2005, 37(2): 190―198. (in Chinese)
    [26] 左孔天, 陈立平, 张云清, 等. 用拓扑优化方法进行热传导散热体的结构优化设计[J]. 机械工程学报, 2005, 41(4): 13―16. Zuo Kongtian, Chen Liping, Zhang Yuqing, et al. Structural optimal design of heat conductive body with topology optimization method [J]. Chinese Journal of Mechanical Engineering, 2005, 41(4): 13―16. (in Chinese)
    [27] Sui Yunkang, Peng Xirong. The ICM method with objective function transformed by variable discrete condition for continuum structure [J]. Acta Mech Sinica, 2006, 22(1): 68―75.
    [28] Kawamoto A, Matsumori T, Yamasaki S, et al. Heaviside projection based on topology optimization by a PDE-filtered scalar function [J]. Structural and Multidisciplinary Optimization, 2011, 44(1): 19―24.
    [29] Lazarov BS, Sigmund O. Filters in topology optimization based on Helmholtz-type differential equations [J]. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765―781.
    [30] 焦洪宇, 周奇才, 李文军, 等. 基于变密度法的周期性拓扑优化[J]. 机械工程学报, 2013, 49(13): 132―138. Jiao Hongyu, Zhou Qicai, Li Wenjun, et al. Periodic topology optimization using variable density method [J]. Journal of Mechanical Engineering, 2013, 49(13): 132―138. (in Chinese)
    [31] Andreassen E, Clausen A, Schevenels M, et al. Efficient topology optimization in MATLAB using 88 lines of code [J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 1―16.
  • 期刊类型引用(10)

    1. 孙雨欣,蔡守宇,张旭,王珂. 基于自适应特征驱动法的散热结构拓扑优化设计. 机械工程学报. 2024(15): 346-357 . 百度学术
    2. 闫晓磊,林逢春,花海燕,谢露. 基于BESO方法的多孔微观结构材料优化设计. 机械设计与制造. 2022(08): 165-168 . 百度学术
    3. 张建平,刘庭显,龚曙光,彭江鹏,陈莉莉. 基于无网格法的热力耦合周期性结构多目标拓扑优化. 机械工程学报. 2022(14): 223-232 . 百度学术
    4. 王浩轩,吴开,杜建镔. 多子域模式重复结构多目标拓扑优化. 计算力学学报. 2021(04): 437-444 . 百度学术
    5. 李信卿,赵清海,张洪信,张铁柱,陈建良. 周期性功能梯度结构稳态热传导拓扑优化设计. 中国机械工程. 2021(19): 2348-2356 . 百度学术
    6. 岳海玲. 周期板桁结构拓扑优化设计. 河南科技. 2021(22): 98-100 . 百度学术
    7. 焦洪宇,李英,胡顺安,左克生,林玲,姜正义,于照鹏. 基于导重法的结构类周期性布局优化方法研究. 机械工程学报. 2020(13): 218-230 . 百度学术
    8. 马欣荣,高智锴. 约束条件下微通道拓扑优化研究. 咸阳师范学院学报. 2020(04): 8-11 . 百度学术
    9. 赵清海,张洪信,华青松,蒋荣超,袁林. 周期性多材料结构稳态热传导拓扑优化设计. 工程力学. 2019(03): 247-256 . 本站查看
    10. 李家春,邹中妃,陈跃威,吴景来,元伟. 基于双向插值模式的空间扩张拓扑优化. 计算机集成制造系统. 2017(07): 1394-1401 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  361
  • HTML全文浏览量:  30
  • PDF下载量:  126
  • 被引次数: 21
出版历程
  • 收稿日期:  2013-11-20
  • 修回日期:  2014-05-28
  • 刊出日期:  2015-05-24

目录

    /

    返回文章
    返回