离散-连续多尺度桥域耦合动力分析方法
BRIDGING COUPLED DISCRETE-CONTINUUM MULTI-SCALE APPROACH FOR DYNAMIC ANALYSIS
-
摘要: 基于离散介质理论和连续介质理论,提出离散-连续多尺度动力耦合分析方法,不需要任何附加的过滤和阻尼就能有效地消除高频波的虚假反射。根据实际需求将计算模型划分为连续介质域和离散介质域,其中连续介质域采用有限差分网格模拟;离散介质域采用离散元颗粒模拟。为保证网格与颗粒两种不同介质之间的能量协调,引入拉格朗日乘子将离散元模型和有限差分模型之间的约束关系,通过能量势函数隐含到动力方程中,推导出多尺度域的动力控制方程。基于动力显式算法求解所建立的离散-连续多尺度动力耦合体系,在通用的离散元(PFC)和有限差分法(FLAC)软件中二次开发编制计算程序,从而实现离散-连续多尺度动力耦合算法。通过算例验证,计算结果与分别采用离散元和有限差分法所得结果一致,说明了该多尺度方法可以有效地消除高频波在离散-连续介质界面上的虚假反射现象。Abstract: A novel multi-scale method coupling continuum-based and discrete-based approaches is proposed in this study, which effectively eliminates spurious wave reflections without necessitating any additional filtering or damping. It starts with the discretization of the entire domain into two distinct elements: meshes for the finite difference method (FDM) and particles for the discrete element method (DEM). Lagrange multipliers are introduced so that compatibility of dynamic behavior between the DEM-based and FDM-based models is enforced. The dynamic governing equations are derived for the multi-scale subdomains using the energy potential function. Based on the central difference method, a multi-scale dynamic explicit algorithm is proposed to solve the established multi-scale dynamic coupling system. This multi-scale method couples two existing commercial packages: the DEM-based code PFC, and the FDM-based code FLAC. The new method is applied to several referencing cases. Good results are obtained from the proposed method when compared with the numerical results obtained from FDM and DEM.