基于云图法的规则桥梁概率地震需求模型

马海滨, 卓卫东, 林杰, 邢文杰, 谷音, 孙颖

马海滨, 卓卫东, 林杰, 邢文杰, 谷音, 孙颖. 基于云图法的规则桥梁概率地震需求模型[J]. 工程力学, 2016, 33(增刊): 119-124. DOI: 10.6052/j.issn.1000-4750.2015.05.S053
引用本文: 马海滨, 卓卫东, 林杰, 邢文杰, 谷音, 孙颖. 基于云图法的规则桥梁概率地震需求模型[J]. 工程力学, 2016, 33(增刊): 119-124. DOI: 10.6052/j.issn.1000-4750.2015.05.S053
MA Hai-bing, ZHUO Wei-dong, LIN Jie, XING Wen-jie, GU Yin, SUN Ying. A PROBALILISTIC SEISMIC DEMAND MODEL FOR REGULAR HIGHWAY BRIDGES BY CLOUD APPROACH[J]. Engineering Mechanics, 2016, 33(增刊): 119-124. DOI: 10.6052/j.issn.1000-4750.2015.05.S053
Citation: MA Hai-bing, ZHUO Wei-dong, LIN Jie, XING Wen-jie, GU Yin, SUN Ying. A PROBALILISTIC SEISMIC DEMAND MODEL FOR REGULAR HIGHWAY BRIDGES BY CLOUD APPROACH[J]. Engineering Mechanics, 2016, 33(增刊): 119-124. DOI: 10.6052/j.issn.1000-4750.2015.05.S053

基于云图法的规则桥梁概率地震需求模型

基金项目: 教育部高等学校博士学科点专项科研基金项目(20113514110003)
详细信息
    作者简介:

    马海滨(1989-),男,山东潍坊人,博士生,从事桥梁抗震研究(E-mail:269016566@qq.com);林杰(1989-),男,福建泉州人,硕士生,从事桥梁抗震研究(E-mail:76804292@qq.com);邢文杰(1987-),男,山西吕梁人,工程师,硕士,主要从事桥梁抗震研究(E-mail:417900657@qq.com);谷音(1976-),女,福建福州人,副教授,博士后,从事大型结构抗震工程研究(E-mail:cinoa@fzu.edu.cn);孙颖(1981-),女,辽宁辽阳人,助理研究员,博士,主要从事桥梁抗震研究(E-mail:14913083@qq.com).

    通讯作者:

    卓卫东(1966-),男,福建莆田人,教授,博士,博导,主要从事桥梁抗震研究(E-mail:zhuowd@fzu.edu.cn).

  • 中图分类号: U442.55

A PROBALILISTIC SEISMIC DEMAND MODEL FOR REGULAR HIGHWAY BRIDGES BY CLOUD APPROACH

  • 摘要: 基于性能的结构抗震设计需要建立在概率理论的基础之上,结构概率地震需求模型是其中的一个关键环节。针对公路梁式桥中的规则桥梁,利用OpenSees软件,建立了8座具有一定代表性的规则桥梁样本;选取三类不同场地条件下2390条国内外地震动记录,基于云图法对8座桥梁样本逐一进行了时程分析;以阻尼比为5%、与结构基本周期相对应的谱加速度Sa作为地震动强度指标,以墩顶位移漂移率D作为工程需求参数,分析了三类不同场地条件下、不同桥梁样本的地震动强度指标与工程需求参数之间的概率分布特征。结果表明:三类不同场地条件下,规则桥梁与结构基本周期对应的弹性谱加速度Sa与墩顶漂移率D之间近似服从指数函数分布。利用分析结果,建立了三类不同场地条件下规则桥梁地震动强度参数与地震需求参数之间统一的简化计算公式;算例验证表明,所建立的简化概率地震需求模型具有良好的计算精度,可大大简化规则桥梁概率地震需求的计算。
    Abstract: The performance based design for structures should be based on the theory of probability; thus establishing a reasonable probabilistic seismic demand model of structures is very important. This paper aims at the regular girder bridges of highway. 8 representative samples are built by OpenSees software and the time history analyses are carried out with the selected 2390 earthquake records at three different site conditions by cloud approach. The spectral acceleration at the fundamental period with 5% damping (Sa) is selected as the ground motion intensity measure and the displacement drift ratio at the top of pier (D) is selected as the engineering demand parameter. The probability distribution between Sa and D for different bridge samples is obtained at three different site conditions. The result shows that the EDP follows an approximate lognormal distribution with different level of IM at three different site conditions; the relevant simplified probabilistic seismic demand model is built by the analysis results. Example of verification shows that the simplified probabilistic seismic demand model has a high calculation accuracy to simplify the calculation of probabilistic seismic demand for regular bridges.
  • [1] SEAOC Vision 2000. Performance based seismic engineering of buildings[R]. Sacramento, California: Version 2000 Committee, Structural Engineering Association of California, 1995.
    [2] ATC-32. Improved seismic design criteria for California bridges: Provisional recommendations[R]. Redwood City, California: Report No ATC-32, Applied Technology Council, 1996.
    [3] Deierlein G G, Krawinkler H, Cornell C A. A Framework for performance-based earthquake engineering[C]. Proceedings of 2003 Pacific Conference on Earthquake Engineering. Christchurch, New Zealand, 2003: 1-8.
    [4] Porter K A. An Overview of PEER's performance-based earthquake engineering methodology[C]. Proceeding of Ninth International Conference on Applications of Statistics and Probability in Civil Engineering. San Francisco, 2003: 1-8.
    [5] Moehle J, Deierlein G G. A framework methodology for performance-based engineering[C]. Proceedings of 13th World Conference on Earthquake Engineering. Vancouver B C Canada, 2004: 1-6.
    [6] Mackie K R, Stojadinovic B. Comparision of incremental dynamic, cloud, and stripe methods for computing probabilistic seismic demand models[C]. Proceedings of 2005 Structures Congress (ASCE), Metropolis & Beyond, 2005: 1-11.
    [7] Vamvatsikosa D, Cornell C A. The incremental dynamic analysis and its application to performance-based earthquake engineering[C]. 12th European Conference on Earthquake Engineering, 2002: 479.
    [8] Vamvatsikosa D, Cornell C A. Applied incremental dynamic analysis[J]. Earthquake Spectra, 2004, 20(2): 523-553.
    [9] 徐雪源. 地面运动强度参数对RC桥梁地震需求的影响[J]. 世界地震工程, 2008, 24(4): 154-158. Xu Xueyuan. The influence of the selection of strong-motion intensity measures on the seismic inelastic demand of RC bridges[J]. World Earthquake Engineering, 2008, 24(4): 154-158. (in Chinese)
    [10] 吕大刚, 于晓辉, 潘峰, 王光远. 基于改进云图法的结构概率地震需求分析[J]. 世界地震工程, 2010, 26(1): 7-15. Lü Dagang, Yu Xiaohui, Pan Feng, Wang Guangyuan. Probabilistic seismic demand analysis of structures based on an improved cloud method[J]. World Information On Earthquake Engineering, 2010, 26(1): 7-15. (in Chinese)
    [11] 曾志和, 樊剑, 余倩倩. 基于性能的桥梁结构概率地震需求分析[J]. 工程力学, 2012, 29(3): 156-162. Zeng Zhihe, Fan Jian, Yu Qianqian. Performance-based probabilistic seismic demand analysis of bridge structures[J]. Engineering Mechanics, 2012, 29(3): 156-162. (in Chinese)
    [12] JTG/T B02-012008, 公路桥梁抗震设计细则[S]. 北京: 人民交通出版社, 2008. JTG/T B02-012008, Guidelines for seismic design of highway bridges[S]. Beijing: China Communication Press, 2008. (in Chinese)
    [13] Aviram Ady, Mackie K R, Stojadinovnic B. Guideline for nonlinear analysis of bridge structures in California[R]. California: Pacific Earthquake Engineering Research Center, 2008.
    [14] 于海英. 国家强震动台网中心[DB/OL]. http://www.csmnc.net, 2013-12-01. Yu Haiying. China strong motion network center[DB/OL]. http://www.csmnc.net, 2013-12-01.
    [15] Ancheta T D. Pacific earthquake engineering research center[DB/OL]. http://ngawest2.berkeley.edu/site, 2013-12-01.
    [16] Padgett J E, Nielson B G, DesRoches R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake and Structural Dynamics, 2008, 37(5): 711-725.
    [17] 叶列平, 马千里, 缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动, 2009, 29(4): 9-23. Ye Lieping, Ma Qianli, Miao Zhiwei. Study on earthquake intensities for seismic analysis of structures[J]. Earthquake Engineering and Engineering Vibration, 2009, 29(4): 9-23. (in Chinese)
    [18] 韩建平, 周伟, 李慧. 基于汶川地震数据的地震动强度指标与中长周期SDOF体系最大响应相关性[J]. 工程力学, 2011, 28(10): 185-196. Han Jianping, Zhou Wei, Li Hui. Correlation between ground motion intensity indices and SDOF system responses with medium-to-long period based on the Wenchuan earthquake data[J]. Engineering Mechanics, 2011, 28(10): 185-196. (in Chinese)
    [19] 何利, 叶献国. 基于复合强度指标的弹塑性输入能量谱研究[J]. 工程力学, 2013, 30(4): 7-14. He Li, Ye Xianguo. Research on the elastic-plastic input energy spectra based on compound intensity indicator[J]. Engineering Mechanics, 2013, 30(4): 7-14. (in Chinese)
  • 期刊类型引用(4)

    1. 蒋家卫,程祖俊,许成顺,杜修力,陈国兴,赵凯. 基于云图法地下结构易损性分析的地震动记录规模选取. 建筑结构学报. 2023(11): 208-215 . 百度学术
    2. 尹建华,冀昆,任叶飞,温瑞智. 条件均值谱选取记录的结构抗倒塌易损性分析. 哈尔滨工业大学学报. 2018(12): 119-124 . 百度学术
    3. 温瑞智,尹建华,冀昆,任叶飞. 结构需求概率危险性分析中强震记录选取研究. 土木工程学报. 2018(S2): 35-40+47 . 百度学术
    4. 成虎,李宏男,王东升,李超,付兴. 考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析. 工程力学. 2017(12): 48-58 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数:  530
  • HTML全文浏览量:  54
  • PDF下载量:  61
  • 被引次数: 17
出版历程
  • 收稿日期:  2015-05-02
  • 修回日期:  2015-12-15
  • 刊出日期:  2016-06-24

目录

    /

    返回文章
    返回