楼梯间外纵墙一字形墙肢的稳定性问题及处理

蔚博琛, 张敬书, 于晓旭, 柳涛

蔚博琛, 张敬书, 于晓旭, 柳涛. 楼梯间外纵墙一字形墙肢的稳定性问题及处理[J]. 工程力学, 2019, 36(8): 133-140. DOI: 10.6052/j.issn.1000-4750.2018.07.0403
引用本文: 蔚博琛, 张敬书, 于晓旭, 柳涛. 楼梯间外纵墙一字形墙肢的稳定性问题及处理[J]. 工程力学, 2019, 36(8): 133-140. DOI: 10.6052/j.issn.1000-4750.2018.07.0403
WEI Bo-chen, ZHANG Jing-shu, YU Xiao-xu, LIU Tao. STABILITY ANALYSIS AND STRENGTHENING OF RECTANGULAR LONGITUDINAL EXTERIOR WALL IN STAIRCASES[J]. Engineering Mechanics, 2019, 36(8): 133-140. DOI: 10.6052/j.issn.1000-4750.2018.07.0403
Citation: WEI Bo-chen, ZHANG Jing-shu, YU Xiao-xu, LIU Tao. STABILITY ANALYSIS AND STRENGTHENING OF RECTANGULAR LONGITUDINAL EXTERIOR WALL IN STAIRCASES[J]. Engineering Mechanics, 2019, 36(8): 133-140. DOI: 10.6052/j.issn.1000-4750.2018.07.0403

楼梯间外纵墙一字形墙肢的稳定性问题及处理

基金项目: 国家自然科学基金项目(51678283)
详细信息
    作者简介:

    蔚博琛(1994-),男,陕西人,硕士生,主要从事高层建筑抗震研究(E-mail:weibch2016@lzu.edu.cn);于晓旭(1991-),男,辽宁人,硕士生,主要从事高层建筑抗震研究(E-mail:yuxx15@lzu.edu.cn);柳涛(1991-),男,山东人,硕士生,主要从事高层建筑抗震研究(E-mail:liut15@lzu.edu.cn).

    通讯作者:

    张敬书(1966-),男,甘肃人,教授,博士,主要从事高层建筑抗震研究(E-mail:jshzhang@lzu.edu.cn).

  • 中图分类号: TU973.2;TU398.2

STABILITY ANALYSIS AND STRENGTHENING OF RECTANGULAR LONGITUDINAL EXTERIOR WALL IN STAIRCASES

  • 摘要: 高层建筑中,部分剪力墙楼梯间外纵墙两侧仅通过连梁与其它墙肢相连,由于剪力墙先于楼梯施工,该墙肢为无支高度较高的一字形墙肢,存在平面外失稳的可能,从而使结构设计偏于不安全。该文首先根据能量法基本原理,考虑施工完成前和完成后两种工况,建立了一字形墙肢考虑自重时平面外失稳的计算方法,并采用有限元数值模拟验证了该方法的正确性。然后以某高层剪力墙结构为例进行验算,指出楼梯间外纵墙一字形墙肢存在失稳的可能。最后给出了四种处理方法:添加翼缘或风井、梯板分布筋锚入一字形墙肢中整浇、用填充墙替代一字形墙肢及计算时不考虑一字形墙肢承担地震作用,并对上述方法进行了分析。该文认为,取消一字形墙肢,沿层高处布置梁,梁上设置轻质填充墙,则可避免楼梯间一字形墙肢的稳定性问题。该做法施工方便,建议采用。但在地震区,需提高楼梯间轻质填充墙的抗倒塌能力,保证生命通道的畅通。
    Abstract: High-rise buildings are often associated with stability problems of longitudinal exterior walls in staircases. The longitudinal exterior walls, of no support, are generally connected to other parts of the building by coupling beams. In traditional structure design, the stability of the walls is often overestimated when the walls subject to transverse bending. This study investigated the stability issue of out-plane bending of longitudinal stair walls under self-weight. Firstly, a theoretical method was proposed to calculate the critical loading based on the energy principles. The theoretical results were in good agreement with the results of finite element simulation. Subsequently, a high-rise shear wall structure was taken into consideration as a case study. The results show that the instability of the rectangular longitudinal exterior wall in staircase might occur. Finally, four measures were suggested to maintain the wall stability:1) adding flanges or air shafts; 2) anchoring the distributed reinforcements of stair slabs into the rectangular wall; 3) replacing the rectangular wall with the infill wall, and 4) calculating the earthquake action without taking into account the rectangular wall. Based on the analysis results of the four measures, it has been concluded that abolishing the rectangular wall, arranging the beam at the story height, and setting the lightweight infill wall on the beam can avoid the stability issue of the rectangular wall in a staircase. This measure is easy to construct and is recommended. However, in seismic zones, improving the collapse-resistant capacity of lightweight infill walls in staircases is necessary to keep the emergency exit unimpeded.
  • [1] Carrillo J, Lizarazo J M, Bonett R. Effect of lightweight and low-strength concrete on seismic performance of thin lightly-reinforced shear walls[J]. Engineering Structures, 2015, 93:61-69.
    [2] Xu G, Wang Z, Wu B, et al. Seismic performance of precast shear wall with sleeves connection based on experimental and numerical studies[J]. Engineering Structures, 2017, 150:346-358.
    [3] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8):130-137. Xiao Shuijing, Xu Longhe, Lu Xiao. Design and behavior study on reinforced concrete shear walls with self-centering capability[J]. Engineering Mechanics, 2018, 35(8):130-137. (in Chinese)
    [4] 薛伟辰, 李亚, 蔡磊, 等. 双面叠合混凝土剪力墙平面内和平面外抗震性能研究[J]. 工程力学, 2018, 35(5):47-53. Xue Weichen, Li Ya, Cai Lei, et al. In-plane and out-of-plane mechanical behavior of double faced superposed concrete shear walls[J]. Engineering Mechanics, 2018, 35(5):47-53. (in Chinese)
    [5] Wallace J W. Behavior, design, and modeling of structural walls and coupling beams -Lessons from recent laboratory tests and earthquakes[J]. International Journal of Concrete Structures & Materials, 2012, 6(1):3-18.
    [6] Kam W Y, Pampanin S. The seismic performance of RC buildings in the 22 February 2011 Christchurch earthquake[J]. Structural Concrete, 2011, 12(4):223-233.
    [7] Timoshenko S P, Gere J M. Theory of elastic stability[M]. 2nd ed. New York:McGraw-Hill, Inc., 1961:1-45.
    [8] Rutenberg A, Leviathan I, Decalo M. Stability of shear-wall structures[J]. Journal of Structural Engineering, 1988, 114(3):707-716.
    [9] Wang C M, Ang K K, Quek S T. Stability formulae for shear-wall frame structures[J]. Building & Environment, 1991, 26(2):217-222.
    [10] 王全凤. 高层双肢剪力墙结构整体稳定的加权余量法[J]. 建筑结构学报, 1993, 14(1):54-62. Wang Quanfeng. Overall stability of coupled shear wall tall building using method of weighted residuals[J]. Journal of Building Structures, 1993, 14(1):54-62. (in Chinese)
    [11] 王全凤, 龙驭球. ODE求解器求解高层双肢剪力墙结构稳定特征值问题[J]. 工程力学, 1994, 11(1):38-44. Wang Quanfeng, Long Yuqiu. Eigenvalue of stability of coupled shear wall tall building by using ODE solver[J]. Engineering Mechanics, 1994, 11(1):38-44. (in Chinese)
    [12] 陈波. 高层多肢剪力墙结构的整体稳定[J]. 土木工程学报, 2003, 36(8):43-47. Chen Bo. Overall stability of multiple shear wall tall building structures[J]. China Civil Engineering Journal, 2003, 36(8):43-47. (in Chinese)
    [13] Zirakian T, Zhang J. Buckling and yielding behavior of unstiffened slender, moderate, and stocky low yield point steel plates[J]. Thin-Walled Structures, 2015, 88:105-118.
    [14] Jin S, Ou J, Liew J Y R. Stability of buckling-restrained steel plate shear walls with inclined-slots:theoretical analysis and design recommendations[J]. Journal of Constructional Steel Research, 2016, 117:13-23.
    [15] DIN 1045-1, Plain, reinforced and prestressed concrete structures[S]. Berlin:Beuth Verlag GmbH, 2001.
    [16] JGJ 3-2010, 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2010. JGJ 3-2010, Technical specification for concrete structures of tall building[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [17] 高亮, 薛建阳, 汪锦林. 型钢再生混凝土框架-再生砌块填充墙结构恢复力模型试验研究[J]. 工程力学, 2016, 33(9):85-93. Gao Liang, Xue Jianyang, Wang Jinlin. Experimental study on the restoring force model of steel reinforced recycled concrete frame infilled with recycled concrete blocks[J]. Engineering Mechanics, 2016, 33(9):85-93. (in Chinese)
    [18] 彭娟, 李碧雄, 邓建辉. 芦山地震和汶川地震中空心砖填充墙震害反思[J]. 世界地震工程, 2014, 30(2):186-193. Peng Juan, Li Bixiong, Deng Jianhui. Rethink of damage to hollow-brick infill walls during Lushan earthquake and Wenchuan earthquake[J]. World Earthquake Engineering, 2014, 30(2):186-193. (in Chinese)
    [19] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [20] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(增刊):126-133. Xu Chunyi, Lu Biao, Yu Xi. Experimental study on the seismic behavior of masonry wall with fiberglass geogrid[J]. Engineering Mechanics, 2018, 35(Suppl):126-133. (in Chinese)
  • 期刊类型引用(6)

    1. 高义奇,林超伟,刘红星,方飞虎,吴昀泽. 高大空间自承重砌体墙稳定性计算方法. 工程力学. 2024(03): 163-172 . 本站查看
    2. 王起龙. 外置楼梯间一字形剪力墙稳定性分析与研究. 广州建筑. 2024(01): 1-4 . 百度学术
    3. 林标义. 广州某超限高层住宅楼结构设计. 广东土木与建筑. 2024(05): 21-24+48 . 百度学术
    4. 陈青松,李真. 深圳某超高层住宅建筑抗震设计. 建筑结构. 2023(S1): 576-580 . 百度学术
    5. 慕青松,张敬书,牛永红,张皓. 楼梯间外纵墙自重作用下面外失稳的理论分析. 兰州大学学报(自然科学版). 2021(05): 688-693 . 百度学术
    6. 郭彦林,朱靖申. 剪力墙的型式、设计理论研究进展. 工程力学. 2020(06): 19-33 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  429
  • HTML全文浏览量:  27
  • PDF下载量:  68
  • 被引次数: 8
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-09-21
  • 刊出日期:  2019-08-24

目录

    /

    返回文章
    返回