屈曲约束钢板剪力墙边框刚度影响研究

范重, 李媛媛, 李玮, 田玉基

范重, 李媛媛, 李玮, 田玉基. 屈曲约束钢板剪力墙边框刚度影响研究[J]. 工程力学, 2020, 37(4): 30-40. DOI: 10.6052/j.issn.1000-4750.2019.05.ST02
引用本文: 范重, 李媛媛, 李玮, 田玉基. 屈曲约束钢板剪力墙边框刚度影响研究[J]. 工程力学, 2020, 37(4): 30-40. DOI: 10.6052/j.issn.1000-4750.2019.05.ST02
FAN Zhong, LI Yuan-yuan, LI Wei, TIAN Yu-ji. INFLUENCE OF FRAME STIFFNESS ON PERFORMANCE OF BUCKLING RESTRAINED STEEL PLATE SHEAR WALLS[J]. Engineering Mechanics, 2020, 37(4): 30-40. DOI: 10.6052/j.issn.1000-4750.2019.05.ST02
Citation: FAN Zhong, LI Yuan-yuan, LI Wei, TIAN Yu-ji. INFLUENCE OF FRAME STIFFNESS ON PERFORMANCE OF BUCKLING RESTRAINED STEEL PLATE SHEAR WALLS[J]. Engineering Mechanics, 2020, 37(4): 30-40. DOI: 10.6052/j.issn.1000-4750.2019.05.ST02

屈曲约束钢板剪力墙边框刚度影响研究

基金项目: “十三五”国家重点研发计划项目(2016YFC0701201)
详细信息
    作者简介:

    范重(1959-),男,北京人,教授级高级工程师,工学博士,主要从事建筑结构设计与研究工作(E-mail:fanz@cadg.cn);李玮(1994-),女,河北人,工学硕士,主要从事薄壁箱型构件研究(E-mail:18813053023@163.com);田玉基(1967-),男,江苏人,教授,工学博士,博导,主要从事风工程和地震工程研究(E-mail:yujitian@bjtu.edu.cn).

    通讯作者:

    李媛媛(1996-),女,安徽人,工学硕士,主要从事钢混组合构件研究(E-mail:yyuanli_06@126.com).

  • 中图分类号: TU391;TU375

INFLUENCE OF FRAME STIFFNESS ON PERFORMANCE OF BUCKLING RESTRAINED STEEL PLATE SHEAR WALLS

  • 摘要: 为了考察边框刚度对屈曲约束钢板剪力墙抗震性能的影响,该文将带边框普通钢板剪力墙和屈曲约束钢板剪力墙作为研究对象,采用ABAQUS非线性有限元分析软件,计算边框刚度对构件受力性能的影响。计算结果表明,在水平往复荷载作用下,带边框屈曲约束钢板剪力墙的滞回曲线饱满,等效粘滞阻尼系数较大,边框柱与边框梁对侧向刚度、承载力与塑性耗能均有一定贡献。在1/50层间位移角时,屈曲约束钢板剪力墙边框柱与边框梁的内凹变形均很小,Mises应力均小于普通钢板剪力墙的边缘构件,损伤程度显著降低,说明对边框柱与边框梁抗弯刚度的要求可以显著低于普通钢板剪力墙。屈曲约束钢板墙内嵌钢板的拉力带分布均匀、细密,最大面外变形与损伤程度均小于普通钢板剪力墙。螺栓对盖板面外变形有很大的约束作用,当螺栓间距较小时,混凝土盖板与钢筋的Mises应力显著减小。现行技术标准中对非加劲钢板剪力墙边框刚度的规定,不能很好地适用于屈曲约束钢板剪力墙。
    Abstract: In order to investigate the effect of frame stiffness on seismic performance of buckling-restrained steel plate shear walls, the paper takes ordinary SPSW with frames and BRSPSW as research objects, and uses ABAQUS non-linear finite element analysis software to study the mechanical performance of members with different frame stiffness. The results show that under horizontal reversed loading, the hysteretic curves of BRSPSW with frame are fuller, the equivalent viscous damping coefficient is larger, and the boundary columns and beams contribute to lateral stiffness, bearing capacity and plastic energy dissipation. At 1/50 inter-story drift ratio, the concave deformations of the frame column and the frame beam of BRSPSW are very small, Von-Mises stress is small compared with that of the pure SPSW, and the damage degree is also significantly reduced, which indicates that the requirement on the flexural stiffness of the frame column and the frame beam is significantly lower than that of the ordinary SPSW. The tension band distribution of the steel plate embedded in the BRSPSW is more uniform and fine, and the maximum out-of-plane deformation and damage degree are less than that of the pure SPSW. Bolts have a significant effect on the out-of-plane deformation of the cover plate. The maximum Von-Mises stress of RC cover plate and steel bar decreased significantly when bolt spacing was small. The current technical specification for the stiffness of the frame of pure SPSW can not be well applied to BRSPSW.
  • [1] JGJ99-2015, 高层民用建筑钢结构技术规程[S]. 北京:中国建筑工业出版社, 1998. JGJ99-2015, Technical specification for steel structure of tall building[S]. Beijing:China Construction Industry Publishing House, 1998. (in Chinese)
    [2] JGJ/T380-2015, 钢板剪力墙技术规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T380-2015, Technical specification for steel plate shear wall[S]. Beijing:China Construction Industry Publishing House, 2015. (in Chinese)
    [3] 范重, 刘学林, 黄彦军. 超高层建筑剪力墙设计与研究的最新进展[J]. 建筑结构, 2011, 41(4):33-43. Fan Zhong, Liu Xuelin, Huang Yanjun. The up to date development on design and research of shear wall in high-rise building[J]. Building Structure, 2011, 41(4):33-43. (in Chinese)
    [4] Timler P, Ventura E C, Prion H, Anjam R. Experimental and analytical studies of steel plate shear wall as applied to the design of tall buildings[J]. The Structure Design of Tall Build, 1998, 7(3):233-249.
    [5] Elgaaly M, Caccese V, Du C. Post-buckling behavior of steel-plate shear walls under cyclic loads[J]. Journal of Structural Engineering, 1993, 119(2):588-605.
    [6] 王迎春, 郝际平, 李峰,等. 钢板剪力墙力学性能研究[J]. 西安建筑科技大学学报, 2007, 39(2):181-186. Wang Yingchun, Hao Jiping, Li Feng, et al. Study on mechanical property of steel plate shear wall[J]. Journal of Xi'an University of Architectural Science and Technology, 2007, 39(2):181-186. (in Chinese)
    [7] Hitaka T, Matsui C. Cyclic tests on steel and concrete-filled tube frames with silt walls[J]. Earthquake Engineering and Structure Dynamics. 2007, 36:707-721.
    [8] 范重, 刘学林, 黄彦军, 李丽, 曹禾. 钢板剪力墙结构设计与施工模拟[J]. 施工技术, 2012, 41(18):1-8. Fan Zhong, Liu Xuelin, Huang Yanjun, Li Li, Cao He. The structural design of steel plate shear wall and construction simulation technology[J]. Construction Technology, 2012, 41(18):1-8. (in Chinese)
    [9] 刘学林, 范重, 黄彦军. 带大矩形洞口钢板剪力墙力学性能研究与设计方法初探[J]. 建筑钢结构进展, 2014, 16(5):35-43. Liu Xuelin, Fan Zhong, Huang Yanjun. A study on the behavior and design method of steel plate shear wall with large rectangular openings[J]. Progress in Steel Building Structures, 2014, 16(5):35-43. (in Chinese)
    [10] 郭彦林, 董全利, 周明. 防屈曲钢板剪力墙滞回性能理论与试验研究[J]. 建筑结构学报, 2009, 30(1):31-39. Guo Yanlin, Dong Quanli, Zhou Ming. Tests and analysis on hysteretic behavior of buckling-restrained steel plate shear wall[J]. Journal of Building Structures, 2009, 30(1):31-39. (in Chinese)
    [11] 郭彦林, 董全利, 周明. 防屈曲钢板剪力墙弹性能及混凝土盖板约束刚度研究[J]. 建筑结构学报, 2009, 30(1):40-47. Guo Yanlin, Dong Quanli, Zhou Ming. Elastic behavior and minimum restraining stiffness of buckling restrained steel plate shear wall[J]. Journal of Building Structures, 2009, 30(1):40-47. (in Chinese)
    [12] 郭彦林, 董全利, 周明. 防屈曲钢板剪力墙弹塑性抗剪极限承载力与滞回性能研究[J]. 工程力学, 2009, 26(2):108-114. Guo Yanlin, Dong Quanli, Zhou Ming. Hysteretic Behavior of buckling-restrained steel plate shear wall[J]. Engineering Mechanics, 2009, 26(2):108-114. (in Chinese)
    [13] Jin S S, Ou J P, Liew R J Y. Stability of bucklingrestrained steel plate shear walls with inclined-slots:theoretical analysis and design recommendations[J]. Journal of Constructional Steel Research, 2016, 117(1):13-23.
    [14] 傅学怡, 魏木旺, 张建. 防屈曲钢板剪力墙稳定性研究[J]. 华中科技大学学报(自然科学版), 2015, 43(8):29-33. Fu Xueyi, Wei Muwang, Zhang Jian. Study on stability of buckling-restrained steel plat shear wall[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(8):29-33. (in Chinese)
    [15] Wei Mu-Wang, Richard Liew J Y, Xiong Ming-Xiang, Fu Xue-Yi. Hysteresis model of a novel partially connected buckling-restrained steel plate shear wall[J]. Journal of Constructional Steel Research 2016, 125(6):74-87.
    [16] 范重, 张娜, 陈亚丽, 朱丹, 刘学林, 杨苏. 分块盖板屈曲约束钢板剪力墙抗震性能研究[J]. 施工技术, 2018, 47(15):1-8. Fan Zhong, Zhang Na, Chen Yali, Zhu Dan, Liu Xuelin, Yang Su. Study on seismic behavior of bucklingrestrained steel plate shear wall with sub-cover plates[J]. Construction Technology, 2018, 47(15):1-8. (in Chinese)
    [17] ANSI/AISC 341-05, Seismic Provisions for Structural Steel Buildings[S]. 2005.
    [18] 石永久, 王萌, 王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(3):293-300. Shi Yongjiu, Wang Meng, Wang Yuanqing. Experimental study of structural steel constitutive relationship under cyclic loading[J]. Journal of Building Materials, 2012, 15(3):293-300. (in Chinese)
    [19] ABAQUS. Analysis user's manual I_V[M]. Version 6. 11. USA:ABAQUS, Inc, Dassault Systèmes, 2011.
    [20] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2016. GB 50010-2010, Code for design of concrete structures:[S]. Beijing:China Architecture and Building Press, 2016. (in Chinese)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  43
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-11
  • 修回日期:  2019-11-16
  • 刊出日期:  2020-04-13

目录

    /

    返回文章
    返回