CFRP加固钢筋混凝土方柱抗震性能尺寸效应的细观分析

金浏, 李秀荣, 杜修力

金浏, 李秀荣, 杜修力. CFRP加固钢筋混凝土方柱抗震性能尺寸效应的细观分析[J]. 工程力学, 2021, 38(7): 41-51. DOI: 10.6052/j.issn.1000-4750.2020.07.0435
引用本文: 金浏, 李秀荣, 杜修力. CFRP加固钢筋混凝土方柱抗震性能尺寸效应的细观分析[J]. 工程力学, 2021, 38(7): 41-51. DOI: 10.6052/j.issn.1000-4750.2020.07.0435
JIN Liu, LI Xiu-rong, DU Xiu-li. MESO-SCALE ANALYSIS OF SIZE EFFECT ON ASEISMIC BEHAVIOR OF REINFORCED CONCRETE SQUARE COLUMNS STRENGTHENED WITH CFRP[J]. Engineering Mechanics, 2021, 38(7): 41-51. DOI: 10.6052/j.issn.1000-4750.2020.07.0435
Citation: JIN Liu, LI Xiu-rong, DU Xiu-li. MESO-SCALE ANALYSIS OF SIZE EFFECT ON ASEISMIC BEHAVIOR OF REINFORCED CONCRETE SQUARE COLUMNS STRENGTHENED WITH CFRP[J]. Engineering Mechanics, 2021, 38(7): 41-51. DOI: 10.6052/j.issn.1000-4750.2020.07.0435

CFRP加固钢筋混凝土方柱抗震性能尺寸效应的细观分析

基金项目: 国家重点研发计划项目(2018YFC1504302);国家自然科学基金项目(51822801,51421005)
详细信息
    作者简介:

    金 浏(1985−),男,江苏人,教授,博士,博导,主要从事混凝土与混凝土结构研究(E-mail: jinliu@bjut.edu.cn)

    李秀荣(1993−),女,山东人,硕士生,主要从事混凝土与混凝土结构研究(E-mail: lixiurong_2017@163.com)

    通讯作者:

    杜修力(1962−),男,四川人,教授,博士,博导,主要从事结构工程及地震工程研究(E-mail: duxiuli@bjut.edu.cn)

  • 中图分类号: TU528

MESO-SCALE ANALYSIS OF SIZE EFFECT ON ASEISMIC BEHAVIOR OF REINFORCED CONCRETE SQUARE COLUMNS STRENGTHENED WITH CFRP

  • 摘要: 为研究CFRP加固钢筋混凝土方柱在地震作用下的破坏模式,该文考虑混凝土材料的非均质性、钢筋-混凝土间的粘结滑移作用,建立了CFRP加固钢筋混凝土方柱三维细观数值模型。在验证数值模型与试验结果吻合良好的基础上,扩展工况探讨了轴压比、CFRP体积配置率对CFRP加固钢筋混凝土方柱抗震性能及名义抗剪强度尺寸效应的影响。结果表明:一定轴压比范围内柱的承载力随轴压比增大而提高,但其延性会降低;该文工况中,CFRP加固钢筋混凝土柱的名义抗剪强度随试件尺寸增大呈降低趋势,存在着明显尺寸效应行为;在经典材料层次尺寸效应律基础上,提出了CFRP加固混凝土方柱名义抗剪强度尺寸效应理论公式(适用范围轴压比小于0.4),模拟结果证实了公式的合理性。
    Abstract: In order to study the failure mechanism of RC columns strengthened by CFRP subjected to axial and cyclic lateral loads, a three-dimensional meso numerical model of reinforced concrete square columns strengthened with CFRP is established, considering the heterogeneity of concrete materials and the bond slip between reinforcement and concrete. On the grounds of the good agreement between the meso-scale simulation results with the available experimental results, the section size of the specimens is enlarged. Furthermore, the effects of axial compression ratio, volume allocation rate of CFRP on the aseismic performance and size effect on shear strength of reinforced concrete short columns strengthened with CFRP are explored. The results show that: the bearing capacity of specimens increases as the increase of axial compression ratio, but the ductility decreases; increasing the volume allocation ratio of CFRP has a limited effect on the increase of bearing capacity, which will enhance the ductility of columns; with the increase of specimen size, the nominal shear strength of columns tends to decrease, and there exists size effect behavior.
  • 图  1   CFRP加固钢筋混凝土柱3D细观数值模型

    Figure  1.   3D meso-numerical model of reinforced concrete columns confined by CFRP

    图  2   加载方案

    Figure  2.   Scheme of loading

    图  3   钢筋-混凝土粘结滑移关系

    Figure  3.   The stress-slip model between steel and concrete

    图  4   钢筋混凝土柱模拟结果与试验结果对比

    Figure  4.   Comparison of simulated and experimental results of square RC columns

    图  5   CFRP加固钢筋混凝土柱试验与模拟破坏形态对比

    Figure  5.   Comparisons between experimental and simulated failure modes of square RC columns strengthened with CFRP

    图  6   CFRP加固钢筋混凝土方柱骨架曲线对比

    Figure  6.   Comparison of skeleton curves of square RC columns strengthened with CFRP

    图  7   不同尺寸CFRP加固钢筋混凝土方柱的滞回曲线

    Figure  7.   Hysteretic curves of square RC columns strengthened with CFRP of different sizes

    图  8   不同尺寸CFRP加固钢筋混凝土方柱的骨架曲线

    Figure  8.   Skeleton curves of square RC columns strengthened with CFRP of different sizes

    图  9   位移延性系数与截面宽度的关系

    Figure  9.   The relationship between displacement ductility coefficient and section size

    图  10   轴压比对柱子名义抗剪强度的影响

    Figure  10.   Influence of axial compression ratio on nominal strength of columns

    图  11   未加固混凝土柱名义抗剪强度尺寸效应拟合情况

    Figure  11.   Size effect fitting of nominal shear strength of plain concrete columns

    图  12   名义抗剪强度与截面尺寸的关系

    Figure  12.   Nominal shear strength vs structure size

    图  13   CFRP约束混凝土柱名义抗剪强度尺寸效应拟合(n=0.4)

    Figure  13.   Size effect fitting of nominal shear strength of CFRP-confined concrete columns (n=0.4)

    图  14   模拟结果与现有理论抗剪强度计算值的对比

    Figure  14.   Comparison of simulation results with theoretical results about shear strength

    图  15   模拟结果与理论计算值的对比情况

    Figure  15.   Comparison between simulation results and theoretical calculation values

    表  1   粘结-滑移本构参数

    Table  1   Parameters utilized in the bond-slip model

    关键点开裂峰值残余
    应力 τ/MPaτcr=2.5ftτu=3ftτr=ft
    滑移 s/mmscr,l=0.025dsu,l=0.04dsr,l=0.55d
    下载: 导出CSV

    表  2   混凝土细观组分及钢筋力学参数

    Table  2   Mechanical parameters of the three meso components of concrete and reinforcing bars utilized

    组分粗骨料砂浆基质界面过渡区纵筋箍筋
    抗压强度σc/MPa*53.1^48.2
    抗拉强度σt/MPa*5.2^4.7
    弹性模量E/GPa*60*42.5^38.4*210*200
    泊松比ν*0.2*0.2^0.2*0.3*0.3
    屈服强度fy/MPa*380.71*419.09
    配筋率ρ/(%)*1*0.5
    注:*为试验实测值[9];^为反复试算取值。
    下载: 导出CSV

    表  3   CFRP加固钢筋混凝土柱几何参数

    Table  3   Geometrical parameters of the RC columns strengthened with CFRP

    试件名称截面宽度B/mm柱高H/mm轴压比n体积配置率 ρf /(%)
    SC-200-0.4-1 200 600 0.4 0.000
    SC-200-0.4-2 200 600 0.4 0.334
    SC-200-0.4-3 200 600 0.4 1.336
    SC-200-0.6-1 200 600 0.6 0.000
    SC-200-0.6-2 200 600 0.6 0.334
    SC-200-0.6-3 200 600 0.6 1.336
    SC-400-0.4-1 400 1200 0.4 0.000
    SC-400-0.4-2 400 1200 0.4 0.334
    SC-400-0.4-3 400 1200 0.4 1.336
    SC-400-0.6-1 400 1200 0.6 0.000
    SC-400-0.6-2 400 1200 0.6 0.334
    SC-400-0.6-3 400 1200 0.6 1.336
    SC-800-0.4-1 800 2400 0.4 0.000
    SC-800-0.4-2 800 2400 0.4 0.334
    SC-800-0.4-3 800 2400 0.4 1.336
    SC-800-0.6-1 800 2400 0.4 0.000
    SC-800-0.6-2 800 2400 0.4 0.334
    SC-800-0.6-3 800 2400 0.4 1.336
    下载: 导出CSV
  • [1] 马颖, 张勤, 贡金鑫. 钢筋混凝土柱弯剪破坏恢复力模型骨架曲线[J]. 建筑结构学报, 2012, 33(10): 116 − 125.

    Ma Ying, Zhang Qin, Gong Jinxin. Skeleton curves of restoring force model of reinforced concrete columns failed in flexure-shear [J]. Journal of Building Structures, 2012, 33(10): 116 − 125. (in Chinese)

    [2]

    Thanh Ngoc Tran C, Li B. Ultimate Displacement of Reinforced Concrete Columns with Light Transverse Reinforcement [J]. Journal of Earthquake Engineering, 2013, 17(2): 282 − 300.

    [3]

    Huang L, Xu L, Chi Y, Xu H. Experimental investigation on the seismic performance of steel–polypropylene hybrid fiber reinforced concrete columns [J]. Construction and Building Materials, 2015, 87: 16 − 27.

    [4] 顾冬生, 吴刚, 吴智深, 等. CFRP加固高轴压比钢筋混凝土短圆柱抗震性能试验研究[J]. 工程抗震与加固改造, 2006(6): 71 − 77. doi: 10.3969/j.issn.1002-8412.2006.06.014

    Gu Dongsheng, Wu Gang, Wu Zhishen, et al. Experimental study on seismic performance of RC short circular columns strengthened with CFRP composites under high-level compression [J]. Earthquake Resistant Engineering and Retrofitting, 2006(6): 71 − 77. (in Chinese) doi: 10.3969/j.issn.1002-8412.2006.06.014

    [5] 陈勤, 李静. 往复荷载作用下CFRP约束混凝土柱力学性能有限元分析[J]. 工业建筑, 2011, 41(增刊 1): 763 − 767.

    Chen Qin, Li Jing. Finite element analysis on mechanical behavior of CFRP-confined concrete column under cyclic loading [J]. Industrial Construction, 2011, 41(Suppl 1): 763 − 767. (in Chinese)

    [6] 张大长, 吴智深. CFRP纤维布加固RC柱的有限元分析模型[J]. 复合材料学报, 2005(4): 156 − 164. doi: 10.3321/j.issn:1000-3851.2005.04.027

    Zhang Dachang, Wu Zhishen. Finite element analytical models for reinforced concrete columns reinforced with CFRP sheets [J]. Acta Materiae Compositae Sinica, 2005(4): 156 − 164. (in Chinese) doi: 10.3321/j.issn:1000-3851.2005.04.027

    [7]

    Shamim A S, Grace Y. Seismic behavior of concrete columns confined with steel and fiber reinforced polymers [J]. ACI Structural Journal, 2002, 99(1): 72 − 80.

    [8] 邓宗才, 李建辉, 张小冬. 混杂FRP 加固腐蚀混凝土柱抗震性能试验[J]. 北京工业大学学报, 2009, 35(10): 1356 − 1363.

    Deng Zongcai, Li Jianhui, Zhang Xiaodong. Seismic behavior of RC corroded columns strengthened with hybrid FRP. [J]. Journal of Beijing University of Technology, 2009, 35(10): 1356 − 1363. (in Chinese)

    [9] 崔宇强. CFRP加固钢筋混凝土柱受压性能和抗震性能的尺寸效应研究[D]. 北京: 北京建筑大学, 2018.

    Cui Yuqiang. Research of size effect on compressive and seismic behavior of CFRP reinforced concrete column. [D]. Beijing: Beijing University of Engineering and Architecture, 2018. (in Chinese)

    [10] 杜修力, 金浏. 细观分析方法在混凝土物理/力学性质研究方面的应用[J]. 水利学报, 2016, 47(3): 355 − 371.

    Du Xiuli, Jin Liu. Applications of meso-scale analysis methods on the study of the physical/mechanical properties of concrete [J]. Journal of Hydraulic Engineering, 2016, 47(3): 355 − 371. (in Chinese)

    [11]

    Kim S M, Abu Al-Rub R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites [J]. Cement and Concrete Research Ceram, 2011, 41(3): 339 − 358.

    [12]

    Yılmaz O, Molinari J F. A mesoscale fracture model for concret [J]. Cement and Concrete Research Ceram, 2017, 97: 84 − 94.

    [13]

    Wriggers P, Moftah S O. Mesoscale models for concrete: Homogenisation and damage behavior [J]. Finite Element in Analysis and Design, 2006, 42(7): 623 − 636.

    [14]

    Song Z, Lu Y. Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data [J]. International Journal of Impact Engineering, 2012, 46: 41 − 55.

    [15]

    Jin Liu, Yu Wenxuan, Su Xiao, et al. Effect of cross-section size on the flexural failure behavior of RC cantilever beams under low cyclic and monotonic lateral loadings [J]. Engineering Structures, 2018, 156: 567 − 586.

    [16]

    Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892 − 900.

    [17] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese).

    [18] 陆新征, 冯鹏, 叶列平. FRP布约束混凝土方柱轴心受压性能的有限元分析[J]. 土木工程学报, 2003(2): 46 − 51. doi: 10.3321/j.issn:1000-131X.2003.02.009

    Lu Xinzheng, Feng Peng, Ye Lieping. Behavior of FRP-confined concrete square columns under uniaxial loading. [J]. Civil Engineering Journal, 2003(2): 46 − 51. (in Chinese) doi: 10.3321/j.issn:1000-131X.2003.02.009

    [19]

    Elsanadedy H M, Al-Salloum Y A, Alsayed S H, Iqbal R A. Experimental and numerical investigation of size effects in FRP-wrapped concrete columns [J]. Construction and Building Materials, 2012, 29: 56 − 72.

    [20] 陈思同. GFRP布约束钢筋混凝土圆柱轴压下尺寸效应研究[D]. 大庆: 东北石油大学, 2016.

    Chen Sitong. Study on the size effect of axial compression performance of reinforced concrete circular column confined by GFRP [D]. Daqing: Northeast Petroleum University, 2016. (in Chinese).

    [21] 王全凤, 沈章春, 杨勇新, 等. HRB400级钢筋混凝土短柱抗震试验研究[J]. 建筑结构学报, 2008, 29(2): 114 − 117. doi: 10.3321/j.issn:1000-6869.2008.02.017

    Wang Quanfeng, Shen Zhangchun, Yang Yongxin, et al. Seismic behavior of HRB400 reinforcement concrete short columns [J]. Journal of Building Structures, 2008, 29(2): 114 − 117. (in Chinese) doi: 10.3321/j.issn:1000-6869.2008.02.017

    [22]

    Bažant Z P, Kim J K. Size effect in shear failure of longitudinally reinforced beams [J]. Journal of the American Concrete Institute, 1984, 81(5): 456 − 468.

    [23] 叶列平, 赵树红, 李全旺, 等. CFRP布加固混凝土柱的斜截面受剪承载力计算[J]. 建筑结构学报, 2000(2): 59 − 67. doi: 10.3321/j.issn:1000-6869.2000.02.008

    Ye Lieping, Zhao Shuhong, Li Quanwang, et al. Calculation of shear strength of concrete column strengthened with carbon fiber reinforced plastic sheet [J]. Journal of Building Structures, 2000(2): 59 − 67. (in Chinese) doi: 10.3321/j.issn:1000-6869.2000.02.008

    [24] 谢剑, 陈胜云, 赵彤. 碳纤维布增强钢筋混凝土柱受剪承载力的试验研究与理论分析[C]. 昆明: 第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集, 2002: 144 − 149.

    Xie Jian, Chen Shengyun, Zhao Tong. Experimental study and theoretical analysis on shear capacity of reinforced concrete columns reinforced with carbon fiber sheets [C]. Kunming: Proceedings of the second National Symposium on fiber reinforced polymer (FRP) application technology in Civil Engineering , 2002: 144 − 199. (in Chinese)

    [25] 张琦, 过镇海. 砼抗剪强度和剪切变形的研究[J]. 建筑结构学报, 1992, 13(5): 17 − 24.

    Zhang Qi, Guo Zhenhai. Investigation on shear strength and shear strain of concrete [J]. Journal of Building Structures, 1992, 13(5): 17 − 24. (in Chinese)

图(15)  /  表(3)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  182
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-05
  • 修回日期:  2020-10-20
  • 网络出版日期:  2020-10-26
  • 刊出日期:  2021-07-24

目录

    /

    返回文章
    返回