MESO-SCALE ANALYSIS OF SIZE EFFECT ON ASEISMIC BEHAVIOR OF REINFORCED CONCRETE SQUARE COLUMNS STRENGTHENED WITH CFRP
-
摘要: 为研究CFRP加固钢筋混凝土方柱在地震作用下的破坏模式,该文考虑混凝土材料的非均质性、钢筋-混凝土间的粘结滑移作用,建立了CFRP加固钢筋混凝土方柱三维细观数值模型。在验证数值模型与试验结果吻合良好的基础上,扩展工况探讨了轴压比、CFRP体积配置率对CFRP加固钢筋混凝土方柱抗震性能及名义抗剪强度尺寸效应的影响。结果表明:一定轴压比范围内柱的承载力随轴压比增大而提高,但其延性会降低;该文工况中,CFRP加固钢筋混凝土柱的名义抗剪强度随试件尺寸增大呈降低趋势,存在着明显尺寸效应行为;在经典材料层次尺寸效应律基础上,提出了CFRP加固混凝土方柱名义抗剪强度尺寸效应理论公式(适用范围轴压比小于0.4),模拟结果证实了公式的合理性。
-
关键词:
- CFRP加固混凝土方柱 /
- 抗震性能 /
- 轴压比 /
- 体积配置率 /
- 尺寸效应
Abstract: In order to study the failure mechanism of RC columns strengthened by CFRP subjected to axial and cyclic lateral loads, a three-dimensional meso numerical model of reinforced concrete square columns strengthened with CFRP is established, considering the heterogeneity of concrete materials and the bond slip between reinforcement and concrete. On the grounds of the good agreement between the meso-scale simulation results with the available experimental results, the section size of the specimens is enlarged. Furthermore, the effects of axial compression ratio, volume allocation rate of CFRP on the aseismic performance and size effect on shear strength of reinforced concrete short columns strengthened with CFRP are explored. The results show that: the bearing capacity of specimens increases as the increase of axial compression ratio, but the ductility decreases; increasing the volume allocation ratio of CFRP has a limited effect on the increase of bearing capacity, which will enhance the ductility of columns; with the increase of specimen size, the nominal shear strength of columns tends to decrease, and there exists size effect behavior. -
-
表 1 粘结-滑移本构参数
Table 1 Parameters utilized in the bond-slip model
关键点 开裂 峰值 残余 应力 τ/MPa τcr=2.5ft τu=3ft τr=ft 滑移 s/mm scr,l=0.025d su,l=0.04d sr,l=0.55d 表 2 混凝土细观组分及钢筋力学参数
Table 2 Mechanical parameters of the three meso components of concrete and reinforcing bars utilized
组分 粗骨料 砂浆基质 界面过渡区 纵筋 箍筋 抗压强度σc/MPa − *53.1 ^48.2 − − 抗拉强度σt/MPa − *5.2 ^4.7 − − 弹性模量E/GPa *60 *42.5 ^38.4 *210 *200 泊松比ν *0.2 *0.2 ^0.2 *0.3 *0.3 屈服强度fy/MPa − − − *380.71 *419.09 配筋率ρ/(%) − − − *1 *0.5 注:*为试验实测值[9];^为反复试算取值。 表 3 CFRP加固钢筋混凝土柱几何参数
Table 3 Geometrical parameters of the RC columns strengthened with CFRP
试件名称 截面宽度B/mm 柱高H/mm 轴压比n 体积配置率 ρf /(%) SC-200-0.4-1 200 600 0.4 0.000 SC-200-0.4-2 200 600 0.4 0.334 SC-200-0.4-3 200 600 0.4 1.336 SC-200-0.6-1 200 600 0.6 0.000 SC-200-0.6-2 200 600 0.6 0.334 SC-200-0.6-3 200 600 0.6 1.336 SC-400-0.4-1 400 1200 0.4 0.000 SC-400-0.4-2 400 1200 0.4 0.334 SC-400-0.4-3 400 1200 0.4 1.336 SC-400-0.6-1 400 1200 0.6 0.000 SC-400-0.6-2 400 1200 0.6 0.334 SC-400-0.6-3 400 1200 0.6 1.336 SC-800-0.4-1 800 2400 0.4 0.000 SC-800-0.4-2 800 2400 0.4 0.334 SC-800-0.4-3 800 2400 0.4 1.336 SC-800-0.6-1 800 2400 0.4 0.000 SC-800-0.6-2 800 2400 0.4 0.334 SC-800-0.6-3 800 2400 0.4 1.336 -
[1] 马颖, 张勤, 贡金鑫. 钢筋混凝土柱弯剪破坏恢复力模型骨架曲线[J]. 建筑结构学报, 2012, 33(10): 116 − 125. Ma Ying, Zhang Qin, Gong Jinxin. Skeleton curves of restoring force model of reinforced concrete columns failed in flexure-shear [J]. Journal of Building Structures, 2012, 33(10): 116 − 125. (in Chinese)
[2] Thanh Ngoc Tran C, Li B. Ultimate Displacement of Reinforced Concrete Columns with Light Transverse Reinforcement [J]. Journal of Earthquake Engineering, 2013, 17(2): 282 − 300.
[3] Huang L, Xu L, Chi Y, Xu H. Experimental investigation on the seismic performance of steel–polypropylene hybrid fiber reinforced concrete columns [J]. Construction and Building Materials, 2015, 87: 16 − 27.
[4] 顾冬生, 吴刚, 吴智深, 等. CFRP加固高轴压比钢筋混凝土短圆柱抗震性能试验研究[J]. 工程抗震与加固改造, 2006(6): 71 − 77. doi: 10.3969/j.issn.1002-8412.2006.06.014 Gu Dongsheng, Wu Gang, Wu Zhishen, et al. Experimental study on seismic performance of RC short circular columns strengthened with CFRP composites under high-level compression [J]. Earthquake Resistant Engineering and Retrofitting, 2006(6): 71 − 77. (in Chinese) doi: 10.3969/j.issn.1002-8412.2006.06.014
[5] 陈勤, 李静. 往复荷载作用下CFRP约束混凝土柱力学性能有限元分析[J]. 工业建筑, 2011, 41(增刊 1): 763 − 767. Chen Qin, Li Jing. Finite element analysis on mechanical behavior of CFRP-confined concrete column under cyclic loading [J]. Industrial Construction, 2011, 41(Suppl 1): 763 − 767. (in Chinese)
[6] 张大长, 吴智深. CFRP纤维布加固RC柱的有限元分析模型[J]. 复合材料学报, 2005(4): 156 − 164. doi: 10.3321/j.issn:1000-3851.2005.04.027 Zhang Dachang, Wu Zhishen. Finite element analytical models for reinforced concrete columns reinforced with CFRP sheets [J]. Acta Materiae Compositae Sinica, 2005(4): 156 − 164. (in Chinese) doi: 10.3321/j.issn:1000-3851.2005.04.027
[7] Shamim A S, Grace Y. Seismic behavior of concrete columns confined with steel and fiber reinforced polymers [J]. ACI Structural Journal, 2002, 99(1): 72 − 80.
[8] 邓宗才, 李建辉, 张小冬. 混杂FRP 加固腐蚀混凝土柱抗震性能试验[J]. 北京工业大学学报, 2009, 35(10): 1356 − 1363. Deng Zongcai, Li Jianhui, Zhang Xiaodong. Seismic behavior of RC corroded columns strengthened with hybrid FRP. [J]. Journal of Beijing University of Technology, 2009, 35(10): 1356 − 1363. (in Chinese)
[9] 崔宇强. CFRP加固钢筋混凝土柱受压性能和抗震性能的尺寸效应研究[D]. 北京: 北京建筑大学, 2018. Cui Yuqiang. Research of size effect on compressive and seismic behavior of CFRP reinforced concrete column. [D]. Beijing: Beijing University of Engineering and Architecture, 2018. (in Chinese)
[10] 杜修力, 金浏. 细观分析方法在混凝土物理/力学性质研究方面的应用[J]. 水利学报, 2016, 47(3): 355 − 371. Du Xiuli, Jin Liu. Applications of meso-scale analysis methods on the study of the physical/mechanical properties of concrete [J]. Journal of Hydraulic Engineering, 2016, 47(3): 355 − 371. (in Chinese)
[11] Kim S M, Abu Al-Rub R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites [J]. Cement and Concrete Research Ceram, 2011, 41(3): 339 − 358.
[12] Yılmaz O, Molinari J F. A mesoscale fracture model for concret [J]. Cement and Concrete Research Ceram, 2017, 97: 84 − 94.
[13] Wriggers P, Moftah S O. Mesoscale models for concrete: Homogenisation and damage behavior [J]. Finite Element in Analysis and Design, 2006, 42(7): 623 − 636.
[14] Song Z, Lu Y. Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data [J]. International Journal of Impact Engineering, 2012, 46: 41 − 55.
[15] Jin Liu, Yu Wenxuan, Su Xiao, et al. Effect of cross-section size on the flexural failure behavior of RC cantilever beams under low cyclic and monotonic lateral loadings [J]. Engineering Structures, 2018, 156: 567 − 586.
[16] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892 − 900.
[17] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010. GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese).
[18] 陆新征, 冯鹏, 叶列平. FRP布约束混凝土方柱轴心受压性能的有限元分析[J]. 土木工程学报, 2003(2): 46 − 51. doi: 10.3321/j.issn:1000-131X.2003.02.009 Lu Xinzheng, Feng Peng, Ye Lieping. Behavior of FRP-confined concrete square columns under uniaxial loading. [J]. Civil Engineering Journal, 2003(2): 46 − 51. (in Chinese) doi: 10.3321/j.issn:1000-131X.2003.02.009
[19] Elsanadedy H M, Al-Salloum Y A, Alsayed S H, Iqbal R A. Experimental and numerical investigation of size effects in FRP-wrapped concrete columns [J]. Construction and Building Materials, 2012, 29: 56 − 72.
[20] 陈思同. GFRP布约束钢筋混凝土圆柱轴压下尺寸效应研究[D]. 大庆: 东北石油大学, 2016. Chen Sitong. Study on the size effect of axial compression performance of reinforced concrete circular column confined by GFRP [D]. Daqing: Northeast Petroleum University, 2016. (in Chinese).
[21] 王全凤, 沈章春, 杨勇新, 等. HRB400级钢筋混凝土短柱抗震试验研究[J]. 建筑结构学报, 2008, 29(2): 114 − 117. doi: 10.3321/j.issn:1000-6869.2008.02.017 Wang Quanfeng, Shen Zhangchun, Yang Yongxin, et al. Seismic behavior of HRB400 reinforcement concrete short columns [J]. Journal of Building Structures, 2008, 29(2): 114 − 117. (in Chinese) doi: 10.3321/j.issn:1000-6869.2008.02.017
[22] Bažant Z P, Kim J K. Size effect in shear failure of longitudinally reinforced beams [J]. Journal of the American Concrete Institute, 1984, 81(5): 456 − 468.
[23] 叶列平, 赵树红, 李全旺, 等. CFRP布加固混凝土柱的斜截面受剪承载力计算[J]. 建筑结构学报, 2000(2): 59 − 67. doi: 10.3321/j.issn:1000-6869.2000.02.008 Ye Lieping, Zhao Shuhong, Li Quanwang, et al. Calculation of shear strength of concrete column strengthened with carbon fiber reinforced plastic sheet [J]. Journal of Building Structures, 2000(2): 59 − 67. (in Chinese) doi: 10.3321/j.issn:1000-6869.2000.02.008
[24] 谢剑, 陈胜云, 赵彤. 碳纤维布增强钢筋混凝土柱受剪承载力的试验研究与理论分析[C]. 昆明: 第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集, 2002: 144 − 149. Xie Jian, Chen Shengyun, Zhao Tong. Experimental study and theoretical analysis on shear capacity of reinforced concrete columns reinforced with carbon fiber sheets [C]. Kunming: Proceedings of the second National Symposium on fiber reinforced polymer (FRP) application technology in Civil Engineering , 2002: 144 − 199. (in Chinese)
[25] 张琦, 过镇海. 砼抗剪强度和剪切变形的研究[J]. 建筑结构学报, 1992, 13(5): 17 − 24. Zhang Qi, Guo Zhenhai. Investigation on shear strength and shear strain of concrete [J]. Journal of Building Structures, 1992, 13(5): 17 − 24. (in Chinese)