郭涛, 孙震, 张帆. T型通道微流控芯片中液滴生成的影响因素研究[J]. 工程力学, 2024, 41(7): 239-248. DOI: 10.6052/j.issn.1000-4750.2022.05.0493
引用本文: 郭涛, 孙震, 张帆. T型通道微流控芯片中液滴生成的影响因素研究[J]. 工程力学, 2024, 41(7): 239-248. DOI: 10.6052/j.issn.1000-4750.2022.05.0493
GUO Tao, SUN Zhen, ZHANG Fan. THE INFLUENCE FACTORS OF MICRO-DROPLET FORMATION IN T-JUNCTION MICRO-FLUIDIC CHIP[J]. Engineering Mechanics, 2024, 41(7): 239-248. DOI: 10.6052/j.issn.1000-4750.2022.05.0493
Citation: GUO Tao, SUN Zhen, ZHANG Fan. THE INFLUENCE FACTORS OF MICRO-DROPLET FORMATION IN T-JUNCTION MICRO-FLUIDIC CHIP[J]. Engineering Mechanics, 2024, 41(7): 239-248. DOI: 10.6052/j.issn.1000-4750.2022.05.0493

T型通道微流控芯片中液滴生成的影响因素研究

THE INFLUENCE FACTORS OF MICRO-DROPLET FORMATION IN T-JUNCTION MICRO-FLUIDIC CHIP

  • 摘要: 高效、可控的微液滴生成技术在药物封装、病毒检测、材料筛选、细胞培养、微流控芯片等生化领域具有广泛的应用前景。而液滴生成频率、大小以及生成位置是试剂定量以及结构改进的重要参考因素。该文基于两相流理论,采用水平集方法追踪连续相与分散相流体界面,探讨了不同流速比情况下壁面接触角、通道宽度比以及主管长度比对的液滴生成频率、大小和生成位置等的影响。结果表明:主要捕捉到分层平行流、段塞流、滴状流和泡状流四种流型,其中滴状流型分布较广,是稳定生成液滴中出现最多的一种流型,只要流速比 \eta 足够大( \eta \geqslant 3.0 ),在不同毛细数下,均能生成。压力差是段塞流的主要生成因素,而滴状流和泡状流液滴主要是由黏性剪切力、压差和界面张力的共同作用形成;流速比越大,液滴生成频率越高,直径越小,生成位置越远;接触角越大则连续相流体与壁面粘滞力越大,从而提高了两相流界面的剪切力,加速了液滴脱落,液滴生成频率增加,同时,凝并时间缩短,也使得液滴直径减小。但是接触角对液滴生成频率和大小的影响有限,而对生成位置的影响较大,尤其在接触角\theta _\rmw \geqslant 160^ \circ 后液滴生成位置曲线呈收敛趋势,因此更高的连续相与壁面间黏性有助于提高系统的可控性;在流速比不变的情况下,通道宽度比 \lambda 对液滴的生成有促进作用,液滴生成频率、大小和生成位置均随通道宽度比的增加呈递增趋势。 \lambda =0.3~0.55区间是不同流速下均能生成液滴的稳定区间;主管长度比 \psi = 15 为液滴生成位置的临界点,此时液滴生成位置较稳定;总之,液滴生成位置受接触角、主管长度比和通道宽度比的影响较大,接触角、主管长度比越大,管内沿程阻力越大、压力幅值越高,则生成位置越提前。而通道宽度比越大,则流动越顺畅,促使液滴生成位置靠后,越来越远离交叉口。

     

    Abstract: The effective droplet diameter, generation location and generation frequency of droplets in two-phase flow are important reference factors for quantitative and structural improvement of experimental reagents. Based on the two-phase flow theory, the level set method is used to track the fluid interface between continuous phase and dispersed phase. The effects of wall contact angle of fluid, channel width ratio and main pipe length ratio on the droplet formation frequency, diameter and generation location under different velocities are investigated in this paper. The results show that: Four Typical flow patterns are mainly captured: stratified flow, slug flow, dripping flow and bubbly flow. Among them, the dripping flow pattern is widely distributed, which is the most common flow pattern in the stable droplet formation, as long as the velocity ratio is large enough (η≥3.0) and can be generated at different capillary numbers. The differential pressure is the main generating factor of slug flow, while the dripping flow and bubble flow are mainly formed by the joint action of differential pressure, viscous shear stress and interfacial tension. The larger ratio of dispersed phase velocity, the higher droplet formation frequency, the smaller diameter of droplet and the farther droplet formation location. The larger contact angle, the larger droplet formation frequency and the smaller droplet diameter. However, the influence of contact angle on droplet formation frequency and size is limited, but the influence of contact angle on droplet formation location is farther, especially when contact angle θw ≥ 160°, the droplet formation location curve tends to converge. When the flow velocity ratio was constant, the channel width ratio promoted the droplet formation frequency, size and location increased with the increase of the channel width ratio. The range of channel width ratio \lambda =0.3 ~ 0.55 is the stable range for droplet formation at different flow velocity ratio. The main channel length ratio ψ=15 is the critical point of the droplet generation location, and the droplet formation position is stable right here. The formation location of droplet is greatly affected by the contact angle, main channel length ratio and channel width ratio. The larger the contact angle and main channel length ratio are, the larger the on-way resistance along the channel and the higher the pressure are, the earlier the formation location is. The larger the channel width ratio is, the formation location of droplets is further and further away from the intersection.

     

/

返回文章
返回