RELIABILITY ANALYSIS FOR FLEXURAL CAPACITY OF PRESTRESSED CONCRETE GIRDERS WITH BONDED CFRP REINFORCEMENTS
-
摘要:
为提出基于可靠度分析的有粘结预应力CFRP筋混凝土梁抗弯承载能力极限状态设计方法,该文建立了包含32座预应力CFRP筋混凝土梁桥的设计空间。该空间涵盖了常见的高跨比范围和两种弯曲破坏模式(受拉破坏和受压破坏)。基于已有文献中115根梁的试验结果,确定了预应力CFRP筋混凝土梁抗弯承载力计算模型的统计参数。在此基础上,采用验算点法开展了预应力CFRP筋混凝土梁可靠度分析,校准了预应力CFRP筋材料分项系数γf,并通过Monte Carlo模拟验证了验算点法计算结果的准确性。结果表明:对于受拉破坏控制的梁,当γf从1.2提高到1.3,可靠指标β约增加0.5;对于受压破坏控制的梁,γf对可靠指标β几乎没有影响。为满足行业标准JTG 2120−2020规定的脆性破坏目标可靠指标,建议预应力CFRP筋材料分项系数取1.3。对预应力CFRP筋混凝土梁弯曲破坏模式进行概率分析,确定了受拉破坏和受压破坏皆可能发生的过渡区范围(0.7ρb<ρ≤1.5ρb,其中ρb为平衡配筋率),并建议1.5ρb为确保发生受压破坏的最小配筋率。
Abstract:To achieve a reliability-based design provisions for the flexural strength of the concrete bridge girders prestressed with bonded carbon fiber-reinforced polymer (CFRP) reinforcements, this paper first establishes a design space of 32 benchmark bridges. This space covers a range of common height-to-span ratios and two types of flexural failure modes (tensile failure and compressive failure). Subsequently, statistical parameters for the flexural strength model are estimated based on an extensive experimental database of 115 beams from the existing literature. On this basis, the checking point method is applied to conduct a reliability analysis and calibrate the partial material factors associated with prestressed CFRP γf. The accuracy of the results obtained from the checking point method is verified by the Monte Carlo simulation. The results show that increasing the value of γf from 1.2 to 1.3 leads to an approximate 0.5 increase in the reliability index β for tension-controlled girders. However, for the compression-controlled girders, the variation in γf has an insignificant effect on their reliability indexes. To meet a uniform target reliability level for brittle failure, as specified in JTG 2120−2020, a prestressed CFRP partial material factor of 1.3 is recommended. Finally, a probabilistic analysis of flexural failure modes of CFRP prestressed concrete beams is conducted to determine the transition region where tension failure and compression failure are possible (0.7ρb<ρ≤1.5ρb, where ρb is the balanced failure mode). As a result, a minimum flexural reinforcement ratio of 1.5ρb is proposed to ensure a compression failure mode.
-
-
表 1 设计空间
Table 1 Design space
梁编号 截面高度/m 跨径/m 破坏模式 MD/(MD+ML) Mud/(kN·m) B1.1-13-T 1.10 13 受拉破坏 0.30 2048 Z1.1-13-T 1.10 13 受拉破坏 0.35 1817 B1.1-27-C 1.10 27 受压破坏 0.46 6011 Z1.1-27-C 1.10 27 受压破坏 0.51 5444 B1.3-16-T 1.30 16 受拉破坏 0.35 2815 Z1.3-16-T 1.30 16 受拉破坏 0.40 2525 B1.3-31-C 1.30 31 受压破坏 0.48 7600 Z1.3-31-C 1.30 31 受压破坏 0.54 6935 B1.5-20-T 1.50 20 受拉破坏 0.42 4168 Z1.5-20-T 1.50 20 受拉破坏 0.47 3737 B1.5-36-C 1.50 36 受压破坏 0.53 10452 Z1.5-36-C 1.50 36 受压破坏 0.59 9537 B1.75-25-T 1.75 25 受拉破坏 0.48 5951 Z1.75-25-T 1.75 25 受拉破坏 0.53 5504 B1.75-40-C 1.75 40 受压破坏 0.56 12725 Z1.75-40-C 1.75 40 受压破坏 0.62 11874 B2.0-30-T 2.00 30 受拉破坏 0.52 8223 Z2.0-30-T 2.00 30 受拉破坏 0.58 7690 B2.0-43-C 2.00 43 受压破坏 0.58 14899 Z2.0-43-C 2.00 43 受压破坏 0.64 14006 B2.25-35-T 2.25 35 受拉破坏 0.56 10917 Z2.25-35-T 2.25 35 受拉破坏 0.61 10300 B2.25-47-C 2.25 47 受压破坏 0.61 17921 Z2.25-47-C 2.25 47 受压破坏 0.66 16963 B2.5-40-T 2.50 40 受拉破坏 0.59 14052 Z2.5-40-T 2.50 40 受拉破坏 0.64 13386 B2.5-49-C 2.50 49 受压破坏 0.63 20559 Z2.5-49-C 2.50 49 受压破坏 0.67 19616 B2.5-48-T 2.50 48 受拉破坏 0.63 19056 Z2.5-48-T 2.50 48 受拉破坏 0.67 18497 B2.5-50-C 2.50 50 受压破坏 0.63 20793 Z2.5-50-C 2.50 50 受压破坏 0.68 20182 注:B表示为边梁,Z表示为中梁;第一个数字代表截面高度,第二个数字代表桥梁跨径;最后一个字母代表破坏模式(T:受拉破坏;C:受压破坏); MD、ML分别为永久作用、可变作用(汽车和人群)产生的弯矩标准值;Mud为弯矩设计值。 表 2 随机变量的统计信息
Table 2 Statistics of random variables
影响因素 参数 偏差系数
λX变异系数
δX分布类型 参考文献 作用模型 构件自重 1.021 0.046 正态分布 文献[24] 沥青桥面铺装自重 0.989 0.111 正态分布 文献[24] 汽车冲击系数 1.200 0.050 正态分布 文献[24] 汽车荷载 0.800 0.086 极值I型 文献[24] 人群荷载 0.579 0.391 极值I型 文献[24] 材料性能 混凝土抗压强度 1.221 0.110 正态分布 文献[25] 混凝土极限压应变 1.000 0.150 对数正态 文献[26] CFRP筋抗拉强度 1.090 0.050 Weibull分布 文献[27] CFRP筋弹性模量 1.000 0.040 正态分布 文献[19] CFRP筋预应力损失 1.000 0.300 正态分布 文献[28] 几何尺寸 梁截面有效高度 1.012 0.023 正态分布 文献[24] 梁宽、翼缘宽 1.001 0.008 正态分布 文献[24] 梁翼、腹板厚 1.032 0.102 正态分布 文献[24] CFRP筋截面面积 1.000 0.030 正态分布 文献[29] 表 3 计算模型不确定系数的统计参数
Table 3 Statistical parameters of model uncertainty
破坏模式 偏差系数λP 变异系数δP 分布类型 受拉破坏 1.038 0.079 Weibull分布 受压破坏 1.030 0.096 正态分布 表 4 校准的预应力CFRP筋材料分项系数
Table 4 Calibrated prestressed CFRP material partial factor
编号 验算点法
校准γfMonte Carlo
校准γf编号 验算点法
校准γfMonte Carlo
校准γfB1.1-13-T 1.04 1.06 Z1.1-13-T 1.03 1.04 B1.3-16-T 1.12 1.13 Z1.3-16-T 1.11 1.12 B1.5-20-T 1.10 1.11 Z1.5-20-T 1.15 1.15 B1.75-25-T 1.15 1.16 Z1.75-25-T 1.21 1.22 B2.0-30-T 1.17 1.18 Z2.0-30-T 1.22 1.22 B2.25-35-T 1.19 1.20 Z2.25-35-T 1.23 1.23 B2.5-40-T 1.22 1.22 Z2.5-40-T 1.25 1.26 B2.5-48-T 1.27 1.28 Z2.5-48-T 1.28 1.29 建议γf 1.30 建议γf 1.30 -
[1] PENG F, XUE W C. Effect of transverse reinforcement on shear response of fiber-reinforced polymer post-tensioned concrete beams [J]. ACI Structural Journal, 2022, 119(5): 31 − 42.
[2] 杨洋, 潘登, 吴刚, 等. 混杂配筋(钢和FRP筋)梁正截面受弯设计方法研究[J]. 工程力学, 2021, 38(9): 192 − 202. doi: 10.6052/j.issn.1000-4750.2020.09.0703 YANG Yang, PAN Deng, WU Gang, et al. Design method for normal section of hybrid reinforced (steel and FRP bars) beams under bending [J]. Engineering Mechanics, 2021, 38(9): 192 − 202. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0703
[3] 孙艺嘉, 吴涛, 刘喜. 无粘结预应力CFRP筋钢纤维轻骨料混凝土梁受弯性能试验研究[J]. 工程力学, 2022, 39(3): 64 − 74. doi: 10.6052/j.issn.1000-4750.2020.12.0940 SUN Yijia, WU Tao, LIU Xi. Flexural behavior of steel fiber-reinforced lightweight aggregate concrete beams prestressed with carbon fiber-reinforced polymer bars [J]. Engineering Mechanics, 2022, 39(3): 64 − 74. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0940
[4] POUDEL P, BELARBI A, GENCTURK B, et al. Flexural behavior of full-scale, carbon-fiber-reinforced polymer prestressed concrete beams [J]. PCI Journal, 2022, 67(5): 22 − 39.
[5] SUN Y J, WU T, LIU X, et al. Failure mode and flexural capacity of concrete beams prestressed with unbonded FRP tendons [J]. Composite Structures, 2022, 283: 114956. doi: 10.1016/j.compstruct.2021.114956
[6] PENG F, XUE W C. Design approach for flexural capacity of concrete T-beams with bonded prestressed and nonprestressed FRP reinforcements [J]. Composite Structures, 2018, 204: 333 − 341. doi: 10.1016/j.compstruct.2018.07.091
[7] PENG F, XUE W C, YU T Q. Cyclic behavior of polypropylene fiber reinforced concrete beams with prestressed CFRP tendons and nonprestressed steel bars [J]. Engineering Structures, 2023, 275: 115201. doi: 10.1016/j.engstruct.2022.115201
[8] PILAKOUTAS K, NEOCLEOUS K, GUADAGNINI M. Design philosophy issues of fiber reinforced polymer reinforced concrete structures [J]. Journal of Composites for Construction, 2002, 6(3): 154 − 161. doi: 10.1061/(ASCE)1090-0268(2002)6:3(154)
[9] 何政, 李光. 基于可靠度的FRP筋材料分项系数的确定[J]. 工程力学, 2008, 25(9): 214 − 223. HE Zheng, LI Guang. Reliability-based calibration of material partial factor of fiber reinforced polymer (FRP) rod [J]. Engineering Mechanics, 2008, 25(9): 214 − 223. (in Chinese)
[10] 彭飞, 薛伟辰. 基于可靠度的GFRP筋混凝土梁抗弯承载力设计方法[J]. 土木工程学报, 2018, 51(5): 60 − 67. PENG Fei, XUE Weichen. Reliability-based design method for ultimate load-bearing capacity of GFRP reinforced concrete beams under flexure [J]. China Civil Engineering Journal, 2018, 51(5): 60 − 67. (in Chinese)
[11] XUE W C, PENG F, ZHENG Q W. Design equations for flexural capacity of concrete beams reinforced with glass fiber-reinforced polymer bars [J]. Journal of Composites for Construction, 2016, 20(3): 04015069. doi: 10.1061/(ASCE)CC.1943-5614.0000630
[12] 彭飞, 薛伟辰. FRP筋混凝土T形和矩形截面梁抗弯承载力计算方法[J]. 工程力学, 2022, 39(2): 76 − 84, 122. doi: 10.6052/j.issn.1000-4750.2020.12.0002 PENG Fei, XUE Weichen. Method of calculating the flexural strength of FRP reinforced concrete T-shaped and rectangular beams [J]. Engineering Mechanics, 2022, 39(2): 76 − 84, 122. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0002
[13] ACI 440.1R-15, Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars [S]. Farmington Hills: American Concrete Institute, 2015.
[14] LAU D, PAM H J. Experimental study of hybrid FRP reinforced concrete beams [J]. Engineering Structures, 2010, 32(12): 3857 − 3865. doi: 10.1016/j.engstruct.2010.08.028
[15] fib. fib Model Code for concrete structures 2010 [M]. Hoboken: Wiley, 2013.
[16] GB 50608-2020, 纤维增强复合材料工程应用技术标准[S]. 北京: 中国计划出版社, 2020. GB 50608-2010, Technical standard for fiber reinforced polymer (FRP) in construction [S]. Beijing: China Planning Press, 2020. (in Chinese)
[17] JSCE-1997, Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials [S]. Tokyo: Japan Society of Civil Engineers, 1997.
[18] CNR DT-203/2006, Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars [S]. Rome: Italian Research Council, 2006.
[19] KIM Y J, NICKLE R W. Strength reduction factors for fiber-reinforced polymer-prestressed concrete bridges in flexure [J]. ACI Structural Journal, 2016, 113(5): 1043 − 1052.
[20] PENG F, XUE W C. Reliability-based design provisions for flexural strength of fiber-reinforced polymer prestressed concrete bridge girders [J]. ACI Structural Journal, 2019, 116(1): 251 − 260.
[21] 王松根, 李松辉. 公路桥梁限载标准的可靠性分析方法[J]. 工程力学, 2010, 27(10): 162 − 166. WANG Songgen, LI Songhui. Reliability-based analysis on the vehicle weight limit of highway bridges [J]. Engineering Mechanics, 2010, 27(10): 162 − 166. (in Chinese)
[22] 袁阳光, 黄平明, 韩万水, 等. 基于可靠度理论的中小跨径桥梁卡车载重限值研究[J]. 工程力学, 2017, 34(8): 161 − 170. doi: 10.6052/j.issn.1000-4750.2016.04.0323 YUAN Yangguang, HUANG Pingming, HAN Wanshui, et al. Reliability based research on truck-load limitation of medium-small-span bridges [J]. Engineering Mechanics, 2017, 34(8): 161 − 170. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.04.0323
[23] 李松辉, 李灿, 聂瑞锋, 等. 考虑抗力修正系数和静载试验效率的RC简支梁桥限载取值[J]. 土木工程学报, 2020, 53(10): 99 − 105. LI Songhui, LI Can, NIE Ruifeng, et al. Truck weight limits for simply supported RC beam bridges considering correction factors of resistances and static load test levels [J]. China Civil Engineering Journal, 2020, 53(10): 99 − 105. (in Chinese)
[24] GB/T 50283−1999, 公路工程结构可靠度设计统一标准[S]. 北京: 中国计划出版社, 1999. GB/T 50283−1999, Unified standard for reliability design of highway engineering structures [S]. Beijing: China Planning Press, 1999. (in Chinese)
[25] JTG 3362−2018, 公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京: 人民交通出版社, 2018. JTG 3362−2018, Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts [S]. Beijing: China Communications Press, 2018. (in Chinese
[26] BAJI H, RONAGH H R. Reliability-based study on ductility measures of reinforced concrete beams in ACI 318 [J]. ACI Structural Journal, 2016, 113(2): 373 − 382.
[27] RIBEIRO S E C, DINIZ S M C. Reliability-based design recommendations for FRP-reinforced concrete beams [J]. Engineering Structures, 2013, 52: 273 − 283. doi: 10.1016/j.engstruct.2013.02.026
[28] JCSS−2002, JCSS Probabilistic model code: Part 3, resistance models [S]. Kongens Lyngby: Joint Committee on Structural Safety, 2002.
[29] SHIELD C K, GALAMBOS T V, GULBRANDSEN P. On the history and reliability of the flexural strength of FRP reinforced concrete members in ACI 440.1 R [J]. Special Publication, 2011, 275: 1 − 18.
[30] ELLINGWOOD B, GALAMBOS T V, MACGREGOR J G, et al. Development of a probability based load criterion for American National Standard A58: Building code requirements for minimum design loads in buildings and other structures [M]. Washington: United States Government Printing Office, 1980.
[31] ZHOU J K, BI F T, WANG Z Q, et al. Experimental investigation of size effect on mechanical properties of carbon fiber reinforced polymer (CFRP) confined concrete circular specimens [J]. Construction and Building Materials, 2016, 127: 643 − 652. doi: 10.1016/j.conbuildmat.2016.10.039
[32] LIANG Y J, SUN C S, ANSARI F. Damage assessment and ductility evaluation of post tensioned beams with hybrid FRP tendons [J]. Journal of Composites for Construction, 2011, 15(3): 274 − 283. doi: 10.1061/(ASCE)CC.1943-5614.0000166
[33] PENG F, XUE W C. Analytical approach for flexural capacity of FRP prestressed concrete T-beams with non-prestressed steel bars [J]. Journal of Composites for Construction, 2018, 22(6): 04018063. doi: 10.1061/(ASCE)CC.1943-5614.0000903
[34] MACGREGOR J G, MIRZA S A, ELLINGWOOD B. Statistical analysis of resistance of reinforced and prestressed concrete members [J]. Journal Proceedings, 1983, 80(3): 167 − 176.
[35] GHOSN M, FRANGOPOL D M, MCALLISTER T P, et al. Reliability-based performance indicators for structural members [J]. Journal of Structural Engineering, 2016, 142(9): F4016002. doi: 10.1061/(ASCE)ST.1943-541X.0001546
[36] JTG 2120−2020, 公路工程结构可靠性设计统一标准[S]. 北京: 人民交通出版社, 2020. JTG 2120−2020, Unified standard for reliability design of highway engineering structures [S]. Beijing: China Communications Press, 2018. (in Chinese)
[37] SHOOMAN M L. Probabilistic reliability: An engineering approach [M]. New York: McGraw-Hill, 1968.
[38] GRACE N, USHIJIMA K, MATSAGAR V, et al. Performance of AASHTO-type bridge model prestressed with carbon fiber-reinforced polymer reinforcement [J]. ACI Structural Journal, 2013, 110(3): 491 − 502.