基于谱聚类的随机子空间模态参数自动识别

AUTOMATIC MODAL PARAMETER IDENTIFICATION WITH STOCHASTIC SUBSPACE BASED ON SPECTRAL CLUSTERING

  • 摘要: 实现模态参数自动识别对于实时结构健康监测系统具有重要意义。针对随机子空间方法输出的稳定图存在大量虚假模态的不足,该文提出了基于加权距离函数的谱聚类算法,并将其应用于稳定图的自动识别,旨在提高模态识别的精确性。介绍了谱聚类算法和随机子空间方法的原理,并将加权距离函数用于计算待聚类节点的相似矩阵,综合考虑模态数据的贡献。通过模态验证准则对稳定图的模态参数进行预处理,剔除明显的虚假模态,以提高聚类效果。将该文方法应用于平面桁架模型和实测人行桥的模态参数计算,结果表明所提出的方法能有效剔除稳定图中的虚假模态,并具有良好的鲁棒性。

     

    Abstract: The automatic modal parameters identification has significant implications for real-time structural health monitoring systems. In response to the drawback of a large number of false modes in the stable diagram obtained by the stochastic subspace identification method, this study proposes a spectral clustering algorithm based on weighted distance function, and applies it to the automatic identification of stable diagrams, aiming to improve the accuracy of modal parameter identification. The principles of the spectral clustering algorithm and the stochastic subspace method are introduced, and the weighted distance function is used to calculate the similarity matrix of the nodes to be clustered, taking into account the contribution of modal data comprehensively. To improve clustering efficiency, the modal parameters of the stable diagram are pre-processed by modal verification criteria to eliminate obvious false modes. The method proposed is applied to the calculation of modal parameters of a plane truss model and of a pedestrian bridge, and the computational results show that the method proposed can effectively eliminate false modes in the stable diagram and has good robustness.

     

/

返回文章
返回