可靠度约束下建筑楼盖人致振动控制方案的拓扑优化方法研究

张卓然, 王浩祺, 陈隽

张卓然, 王浩祺, 陈隽. 可靠度约束下建筑楼盖人致振动控制方案的拓扑优化方法研究[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.10.0729
引用本文: 张卓然, 王浩祺, 陈隽. 可靠度约束下建筑楼盖人致振动控制方案的拓扑优化方法研究[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.10.0729
ZHANG Zhuo-ran, WANG Hao-qi, CHEN Jun. TOPOLOGY OPTIMIZATION METHOD FOR HUMAN-INDUCED VIBRATION CONTROL OF LARGE-SPAN FLOORS UNDER RELIABILITY CONSTRAINT[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.10.0729
Citation: ZHANG Zhuo-ran, WANG Hao-qi, CHEN Jun. TOPOLOGY OPTIMIZATION METHOD FOR HUMAN-INDUCED VIBRATION CONTROL OF LARGE-SPAN FLOORS UNDER RELIABILITY CONSTRAINT[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.10.0729

可靠度约束下建筑楼盖人致振动控制方案的拓扑优化方法研究

基金项目: 国家自然科学基金项目(52008306,51778465);上海市青年科技英才扬帆计划项目(20YF1451300)
详细信息
    作者简介:

    张卓然(1999−),男,新疆人,硕士生,主要从事人致振动减振控制研究(E-mail: 2132507@tongji.edu.cn)

    陈 隽(1972−),男,河南人,教授,博士,博导,主要从事工程结构振动舒适度和大数据防灾研究(E-mail: cejchen@tongji.edu.cn)

    通讯作者:

    王浩祺(1990−),男,北京人,副研究员,博士,博导,主要从事工程结构振动舒适度和结构健康监测研究(E-mail: 12wanghaoqi@tongji.edu.cn)

  • 中图分类号: TU311.3

TOPOLOGY OPTIMIZATION METHOD FOR HUMAN-INDUCED VIBRATION CONTROL OF LARGE-SPAN FLOORS UNDER RELIABILITY CONSTRAINT

  • 摘要:

    安装调谐质量阻尼器是减轻大跨建筑楼盖人致振动的有效方法。阻尼器的参数、位置等通常基于经验确定,难以保证其结果为最优减振控制方案,且忽略了人致荷载的随机性。在此背景下,考虑人致荷载的随机性,采用拓扑优化方法提出一种可靠度约束下的调谐质量阻尼器减振控制方法。分析表明,将该方法用于某大跨结构的人致振动减振方案优化设计中,可获得良好的效果。

    Abstract:

    The installation of tuned mass dampers (TMD) is an effective method to reduce human-induced vibration of large-span floors. The parameters and locations of the TMDs are usually empirically determined, which makes it difficult to ensure the most optimized result and to consider the stochastic feature of the human-induced load. A strategy for human-induced vibration serviceability design is proposed based on topology optimization. The stochastic feature of the human-induced vibration is considered, and the optimization constraints are determined from the perspective of dynamic reliability constraints. Satisfactory results are obtained by applying the method to the optimal design of the human-induced vibration using TMDs for a large-span structure.

  • 图  1   研究流程图

    Figure  1.   Flow chart

    图  2   某大跨结构示意图

    Figure  2.   Schematic diagram of a large span structure

    图  3   结构前4阶模态振型图

    Figure  3.   The first 4 orders of modal shapes of the structure

    图  4   10人同步步行荷载等效作用位置

    Figure  4.   Location of equivalent 10-person walking loads

    图  5   不安装TMD系统PDEM结果

    Figure  5.   PDEM results without TMD system

    图  6   布置TMD后PDEM结果

    Figure  6.   PDEM results after placement of TMD

    表  1   随机变量及来源

    Table  1   Random variables and sources

    随机变量名称 均值 标准差 数据来源
    行人质量/kg 62.8 10.900 《2010年国民体质监测公报》[25]
    步行频率/Hz 2 0.173 《Dynamic design of footbridges》
    MATSUMOTO等[26]
    动载因子α1 0.3241 0.0973 《基于三维步态分析技术的
    步行荷载实验建模研究》
    彭怡欣[27]
    动载因子α2 0.0895 0.0474
    动载因子α3 0.0601 0.0294
    下载: 导出CSV

    表  2   确定性结构优化结果

    Table  2   Deterministic structure optimization results

    荷载
    工况
    TMD个
    数/个
    系统峰值加速
    度/(m/s2)
    布置方案结果图例 单个TMD
    质量/kg
    TMD总
    质量/kg

    2 Hz
    步行
    荷载
    4 0.1498 1085 4340
    6 0.1454 835 5010
    8 0.1499 630 5040
    10 0.1494 543 5430
    12 0.1498 480 5760
    下载: 导出CSV

    表  3   基于可靠度优化结果

    Table  3   Optimization results based on reliability

    荷载
    工况
    TMD个
    数/个
    结构可靠度 布置方案结果图例 单个TMD
    质量/kg
    TMD总
    质量/kg
    随机
    步行
    荷载
    4 0.9486 2410 9640
    6 0.9512 1380 8280
    8 0.9448 1120 8960
    10 0.9312 950 9500
    12 0.9237 800 9600
    下载: 导出CSV
  • [1] JGJ/T 441−2019, 建筑楼盖结构振动舒适度技术标准[S]. 北京: 中国建筑工业出版社, 2020.

    JGJ/T 441−2019, Technical standard for vibration comfort of building covers [S]. Beijing: China Architecture & Building Press, 2020. (in Chinese)

    [2] 赵昕, 姚杰, 江祥, 等. 基于顶点加速度敏感性数据的超高层建筑风振舒适度优化设计[J]. 建筑结构学报, 2020, 41(增刊2): 357 − 364.

    ZHAO Xin, YAO Jie, JIANG Xiang, et al. Human comfort design optimization for super tall buildings based on top acceleration sensitivity data [J]. Journal of Building Structures, 2020, 41(Suppl 2): 357 − 364. (in Chinese)

    [3]

    LIEVENS K, LOMBAERT G, DE ROECK G, et al. Robust design of a TMD for the vibration serviceability of a footbridge [J]. Engineering Structures, 2016, 123: 408 − 418. doi: 10.1016/j.engstruct.2016.05.028

    [4] 吴新烨, 傅树德, 李政珂, 等. 基于人群激励下大跨廊桥人致振动舒适度评估[J]. 建筑结构, 2023, 53(增刊1): 801 − 808.

    WU Xinye, FU Shude, LI Zhengke, et al. Evaluation of human-induced vibration comfort of large-span corridor bridges based on crowd excitation [J]. Building Structures, 2023, 53(Suppl 1): 801 − 808. (in Chinese)

    [5] 陈浩, 徐宇同, 赵昕, 等. 大跨钢构连桥振动敏感性分析与减振设计[J]. 建筑结构, 2023, 53(增刊1): 1094 − 1099.

    CHEN Hao, XU Yutong, ZHAO Xin, et al. Vibration sensitivity analysis and vibration reduction design of long span steel bridge [J]. Building Structures, 2023, 53(Suppl 1): 1094 − 1099. (in Chinese)

    [6] 朱璨. 大跨径人行桥人致振动舒适度分析[J]. 四川建材, 2016, 42(3): 85 − 86. doi: 10.3969/j.issn.1672-4011.2016.03.044

    ZHU Can. Analysis for comfort of pedestrian-induced vibration on large-span pedestrian bridges [J]. Sichuan Building Materials, 2016, 42(3): 85 − 86. (in Chinese) doi: 10.3969/j.issn.1672-4011.2016.03.044

    [7]

    XU Y S, XU Z D, GUO Y Q, et al. Dynamic properties and energy dissipation study of sandwich viscoelastic damper considering temperature influence [J]. Buildings, 2021, 11(10): 470. doi: 10.3390/buildings11100470

    [8]

    WEBER F, BORCHSENIUS F, DISTL J, et al. Performance of numerically optimized tuned mass damper with inerter (TMDI) [J]. Applied Sciences, 2022, 12(12): 6204. doi: 10.3390/app12126204

    [9] 罗晓群, 张晋, 沈昭, 等. 单斜面索拱支承曲梁人行桥人致振动控制研究[J]. 振动与冲击, 2020, 39(11): 83 − 92.

    LUO Xiaoqun, ZHANG Jin, SHEN Zhao, et al. Human-induced vibration control of curved beam footbridge with single inclined cable arch [J]. Journal of Vibration and Shock, 2020, 39(11): 83 − 92. (in Chinese)

    [10] 张竞巍, 魏晓军, 夏冉, 等. 基于嵌入式多项式混沌展开法的TMD鲁棒优化设计[J]. 工程力学, 2023, doi: 10.6052/j.issn.1000-4750.2023.04.0292.

    ZHANG Jingwei, WEI Xiaojun, XIA Ran, et al. Robust optimal design for tuned mass damper based on intrusive polynomial chaos expansion method [J]. Engineering Mechanics, 2023, doi: 10.6052/j.issn.1000-4750.2023.04.0292. (in Chinese)

    [11] 王宝顺, 何浩祥, 闫维明. 质量调谐-颗粒阻尼器复合减振体系的力学解析及优化分析[J]. 工程力学, 2021, 38(6): 191 − 208. doi: 10.6052/j.issn.1000-4750.2020.07.0463

    WANG Baoshun, HE Haoxiang, YAN Weiming. Analytical model and optimization analysis of combined damping system with TMD and particle damper [J]. Engineering Mechanics, 2021, 38(6): 191 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0463

    [12]

    VERMA M, NARTU M K, SUBBULAKSHMI A. Optimal TMD design for floating offshore wind turbines considering model uncertainties and physical constraints [J]. Ocean Engineering, 2022, 243: 110236. doi: 10.1016/j.oceaneng.2021.110236

    [13] 张阳, 辛棚昭, 赫中营. 人行桥人致振动及TMD减振性能分析[J]. 市政技术, 2019, 37(4): 76 − 81. doi: 10.3969/j.issn.1009-7767.2019.04.026

    ZHANG Yang, XIN Pengzhao, HE Zhongying. Analysis of pedestrian induced vibration and the damping performance of TMD structure of footbridge [J]. Municipal Engineering Technology, 2019, 37(4): 76 − 81. (in Chinese) doi: 10.3969/j.issn.1009-7767.2019.04.026

    [14] 童汉元, 游科华. 大跨异形人行拱桥舒适度分析及TMD减振控制[J]. 城市道桥与防洪, 2023(2): 78 − 82, 86.

    TONG Hanyuan, YOU Kehua. Comfort analysis and TMD vibration reduction control of long-span special-shaped pedestrian arch bridge [J]. Urban Roads Bridges & Flood Control, 2023(2): 78 − 82, 86. (in Chinese)

    [15]

    WANG H Q, GE Q, ZENG D J, et al. Human-induced vibration serviceability: From dynamic load measurement towards the performance-based structural design [J]. Buildings, 2023, 13(8): 1977. doi: 10.3390/buildings13081977

    [16] 丁国, 陈隽. 行人荷载随机性对楼盖振动响应的影响研究[J]. 振动工程学报, 2016, 29(1): 123 − 131.

    DING Guo, CHEN Jun. Influences of walking load randomness on vibration responses of long-span floors [J]. Journal of Vibration Engineering, 2016, 29(1): 123 − 131. (in Chinese)

    [17] 向越, 谭平, 贺辉, 等. 随机激励下带滞变阻尼的调谐质量阻尼器减振性能研究[J]. 工程力学, 2024, 41(1): 171 − 181. doi: 10.6052/j.issn.1000-4750.2022.03.0237

    XIANG Yue, TAN Ping, HE Hui, et al. Vibration mitigation performance of tuned mass damper with hysteretic damping subjected to white-noise excitation [J]. Engineering Mechanics, 2024, 41(1): 171 − 181. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.03.0237

    [18] 李杰. 论第三代结构设计理论[J]. 同济大学学报(自然科学版), 2017, 45(5): 617 − 624, 632.

    LI Jie. On the third generation of structural design theory [J]. Journal of Tongji University (Natural Science), 2017, 45(5): 617 − 624, 632. (in Chinese)

    [19] 贾宇婷, 杨娜, 白凡, 等. 随机行人荷载下结构动力可靠度分析[J]. 振动工程学报, 2020, 33(3): 509 − 516.

    JIA Yuting, YANG Na, BAI Fan, et al. Dynamic reliability analysis of structures under stochastic human-induced loads [J]. Journal of Vibration Engineering, 2020, 33(3): 509 − 516. (in Chinese)

    [20]

    ZENG D J, WANG H Q, CHEN J. Dynamic reliability analysis of large-span structures under crowd bouncing excitation [J]. Buildings, 2022, 12(3): 332. doi: 10.3390/buildings12030332

    [21] 杨俊毅, 陈建兵, 李杰. 不同分布随机参数结构非线性地震反应的概率密度演化[J]. 西南交通大学学报, 2015, 50(6): 1047 − 1054.

    YANG Junyi, CHEN Jianbing, LI Jie. Probability density evolution analysis of nonlinear seismic response of structures with random parameters following different distributions [J]. Journal of Southwest Jiaotong University, 2015, 50(6): 1047 − 1054. (in Chinese)

    [22]

    YANG J S, CHEN J B, BEER M, et al. An efficient approach for dynamic-reliability-based topology optimization of braced frame structures with probability density evolution method [J]. Advances in Engineering Software, 2022, 173: 103196. doi: 10.1016/j.advengsoft.2022.103196

    [23] 高文俊, 吕西林. 拓扑优化在结构工程中的应用[J]. 结构工程师, 2020, 36(6): 232 − 241.

    GAO Wenjun, LYU Xilin. Applications of topology optimization in structural engineering [J]. Structural Engineers, 2020, 36(6): 232 − 241. (in Chinese)

    [24] 陈隽, 王浩祺, 彭怡欣. 行走激励的傅里叶级数模型及其参数的实验研究[J]. 振动与冲击, 2014, 33(8): 11 − 15, 28.

    CHEN Jun, WANG Haoqi, PENG Yixin. Experimental investigation on Fourier-series model of walking load and its coefficients [J]. Journal of Vibration and Shock, 2014, 33(8): 11 − 15, 28. (in Chinese)

    [25] 体育总局. 2010年国民体质监测公报[EB]. https://www.sport.gov.cn/n315/n329/c965571/content.html (2011-09-02).
    [26]

    MATSUMOTO Y, NISHIOKA T, SHIOJIRI H, et al. Dynamic design of footbridges [J]. IABSE Proceedings, 1978, 2(17): 1 − 15.

    [27] 彭怡欣. 基于三维步态分析技术的步行荷载实验建模研究[D]. 上海: 同济大学, 2012.

    PENG Yixin. Experimental modeling of walking load based on three-dimensional gait analysis technology [D]. Shanghai: Tongji University, 2012. (in Chinese)

    [28]

    BENDSOE M, SIGMUND O. Material interpolation schemes in topology optimization [J]. Archive of Applied Mechanics, 1999, 69(9/10): 635 − 654.

  • 期刊类型引用(10)

    1. 李友华,沈飞,王志慧,刘奕光,邢前,柯燎亮. 计及磨损的电连接器插拔力分析. 固体力学学报. 2024(01): 52-60 . 百度学术
    2. 王凯模,沈火明,王宇星,廖业宏,刘娟,任啟森,彭振驯,黄恒. 涂层锆合金包壳管切向微动磨损数值预测模型研究. 重庆理工大学学报(自然科学). 2024(02): 117-122 . 百度学术
    3. 韩怡茗,李欣,闫贺年,杨建伟. 交变双轴加载下钛合金微动磨损的仿真及试验研究. 机电工程. 2024(07): 1251-1259+1268 . 百度学术
    4. 韩怡茗,李欣,刘乐强,杨建伟. 微动磨损形貌与接触应力场耦合机制仿真分析. 机床与液压. 2024(19): 135-140 . 百度学术
    5. 唐正强,张慧杰,李俨,张太华. 微动磨损工况下二维柱面对平面磨损形貌的数值计算与分析. 机械设计与制造. 2021(05): 34-39 . 百度学术
    6. 张慧杰,王志敏,张太华. 微动工况下柱面不同因素对平面磨损显著性的分析. 工具技术. 2019(01): 47-50 . 百度学术
    7. 徐时贤,李红波,苏正涛. 基于有限元分析方法的填充聚四氟乙烯磨损公式拟合. 润滑与密封. 2019(09): 142-146 . 百度学术
    8. 李玲,麻诗韵,阮晓光,康乐,蔡安江. 加载相位差对微动磨损影响的数值模拟研究. 表面技术. 2018(09): 93-100 . 百度学术
    9. 赵杰江,唐力晨,钱浩,谢永诚,丁淑蓉,霍永忠. 侧压对传热管用690合金微动疲劳寿命影响的计算分析与估算公式. 原子能科学技术. 2018(06): 1070-1076 . 百度学术
    10. 聂重阳,郑德志,古乐,张弛,王黎钦. 线接触作用下超薄膜-基底界面力学分析. 工程力学. 2017(12): 202-209 . 本站查看

    其他类型引用(7)

图(6)  /  表(3)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  5
  • PDF下载量:  17
  • 被引次数: 17
出版历程
  • 收稿日期:  2023-10-02
  • 修回日期:  2024-01-31
  • 录用日期:  2024-02-29
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回