STUDY ON MULTI-SCALE TEST MODEL INTERFACE CONNECTION METHOD CONSIDERING MULTI-PARAMETER SIMILARITY OF INTERNAL FORCES
-
摘要:
建筑结构多尺度模型作为一种精度与成本的均衡方案,合理的界面连接方法能够较准确保证不同尺度模型之间的荷载传递与运动协调关系,但在结构多尺度模型试验研究中,简单、准确、适用范围广的界面连接方法与连接装置仍是研究的重点和难点。传统界面模拟方法中常建立刚性界面连接,会导致界面处各结点内力与原型结构相差较大,造成模型失真。针对该问题,该文提出了一种考虑剪力、轴力与弯矩多参数相似的多尺度模型界面连接方法,通过将构件尺度模型界面处的内部结点分解,建立了两相邻结点的内力耦联关系,并将其轴力解耦为层间剪力与弯矩共同提供,同时补充力矩作为“重叠域”提供倾覆弯矩。根据界面处各结点的内力平衡方程,建立了基于多点约束法的界面改进传递矩阵,实现了楼层-构件多尺度模型在界面处各结点剪力、轴力与弯矩的内力多参数相似,提出了改进传递矩阵的计算方法与流程,并建立了该方法的多尺度界面试验模型。最后,选取两层三跨框架结构作为典型试验模型,分别制作了全构件尺度原型模型与楼层-构件多尺度模型,通过开展竖向和水平荷载作用下的静力试验与振动台试验,验证了该方法的准确性和可行性。
Abstract:As a balanced scheme of accuracy and cost, the reasonable interface connection method of multi-scale model of building structure can accurately ensure the load transfer and motion coordination between different scale models. However, simple, accurate and widely applicable interface simulation methods and connection devices are still the focus and difficulty in the study of structural multi-scale model tests. Rigid interface connections are often established in traditional interface connection methods, which can make the internal force of each node at the interface different from the prototype structure, resulting in model distortion. Thusly, a multi-scale model interface simulation method considering the similarity of multi-parameters of shear force, of axial force and, of bending moment is proposed. By decomposing the internal nodes at the interface, the internal force coupling between two neighbor nodes is established, and the axial force is decoupled into the shear force and bending moment provided together, supplemental moments also provide overturning moments as "overlapping domains". According to the internal force balance equations of each node, an interface improvement transfer matrix based on the multi-point constraint method is established, the internal force multi-parameter similarity of shear force, of axial force and, of bending moment of each node at the interface is achieved for the storey-component multi-scale model, the calculation method and procedure of the improved transfer matrix are proposed, and the multi-scale interface test model is established. Finally, a frame structure was selected as a typical test model, and a full component-scale prototype model and a storey-component multi-scale model were produced respectively, and the accuracy and feasibility of the method were verified by the shaking table tests and by the static tests under vertical and horizontal loads.
-
-
表 1 原型结构主要设计参数
Table 1 Main design parameters of the frame structure
构件 尺寸/mm 材料 柱 20×10(截面) 亚克力板 梁 16×8(截面) 板 5(厚度) 表 2 原型结构界面处内力
Table 2 Internal forces at the interface of prototype structure
结点 NG/N NF/N FF/N MF/(N·mm) S1 −10.75 26.32 10.38 1.07 S2 −25.99 −7.42 14.62 1.57 S3 −25.99 7.42 14.62 1.57 S4 −10.75 −26.32 10.38 1.07 表 3 多尺度模型主要设计参数
Table 3 Main design parameters of the multi-scale model
力学参数 构件名称
(连接两结点)长度/mm 截面
尺寸/mm材料 Heff 65 B 65 38×10 亚克力板 G1(β1)=G2(β3) 0.44 C11−G1=G3−C32 88 20×20 G2(β1)=G1(β3) 0.56 G1−C12=C31−G3 112 20×20 G1(β2)=G2(β2) 0.5 C21−G2=G2−C22 100 20×20 l1/l3 103 C11−S1=C32−S3/
C12−S2=C31−S3103 32×12/
30×10α1,1=α3,2/
α1,2=α3,10.65/0.35 l2 115 C21−S2=C22−S3 115 20×8 α2,1=α2,1 0.5 h1=h3 55 C1−G1=C3−G3 55 20×20 α1=α3 0.46 h2 43 C2−G2 43 20×20 α2 0.08 表 4 加载工况
Table 4 Loading cases
工况 地震波 台面峰值加速度/(cm·s−2) 备注 0 白噪声 70 − 1 EL、TF 55 7度(0.15 g)多遇 2 EL、TF 100 7度(0.10 g)设防 3 EL、TF 150 7度(0.15 g)设防 4 EL、TF 220 7度(0.10 g)罕遇 5 EL、TF 310 7度(0.15 g)罕遇 7 白噪声 70 − -
[1] 陈才华, 王翠坤, 张宏, 等. 振动台试验对高层建筑结构设计的启示[J]. 建筑结构学报, 2020, 41(7): 1 − 14. CHEN Caihua, WANG Cuikun, ZHANG Hong, et al. Edification of shaking table test on structure design of high-rise buildings [J]. Journal of Building Structures, 2020, 41(7): 1 − 14. (in Chinese)
[2] OSKAY C, FISH J. Multiscale modeling of fatigue for ductile materials [J]. International Journal for Multiscale Computational Engineering, 2004, 2(3): 329 − 354. doi: 10.1615/IntJMultCompEng.v2.i3.10
[3] 汪楚清, 王虎长, 李亮, 等. 大跨越输电钢管塔结构多尺度有限元分析[J]. 工程力学, 2013, 30(7): 147 − 152, 166. doi: 10.6052/j.issn.1000-4750.2012.03.0189 WANG Chuqing, WANG Huchang, LI Liang, et al. Multi-scale finite element analysis of steel tube tower for large crossing transmission lines [J]. Engineering Mechanics, 2013, 30(7): 147 − 152, 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.03.0189
[4] LI Z X, ZHOU T Q, CHAN T H T, et al. Multi-scale numerical analysis on dynamic response and local damage in long-span bridges [J]. Engineering Structures, 2007, 29(7): 1507 − 1524. doi: 10.1016/j.engstruct.2006.08.004
[5] 李双江, 田石柱. 基于多尺度模型的抗震混合试验方法研究[J]. 土木工程学报, 2020, 53(2): 41 − 47. LI Shuangjiang, TIAN Shizhu. Research on seismic hybrid simulation based on multi-scale model [J]. China Civil Engineering Journal, 2020, 53(2): 41 − 47. (in Chinese)
[6] BAO Z, YUAN Y, YU H T. Multi-scale physical model of shield tunnels applied in shaking table test [J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 465 − 479. doi: 10.1016/j.soildyn.2017.06.021
[7] 陈子峰, 林旭川, 陆新征, 等. 6.4级漾濞地震某RC框架及其非结构部件震害分析[J]. 工程力学, 2024, 41(1): 138 − 148. doi: 10.6052/j.issn.1000-4750.2022.03.0224 CHEN Zifeng, LIN Xuchuan, LU Xinzheng, et al. Analysis on damage of a RC frame and its non-structural components in the Ms6.4 Yangbi earthquake [J]. Engineering Mechanics, 2024, 41(1): 138 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.03.0224
[8] LU X L, FU G K, SHI W X, et al. Shake table model testing and its application [J]. The Structural Design of Tall and Special Buildings, 2008, 17(1): 181 − 201. doi: 10.1002/tal.338
[9] 李兆霞. 大型土木结构多尺度损伤预后的现状、研究思路与前景[J]. 东南大学学报(自然科学版), 2013, 43(5): 1111 − 1121. doi: 10.3969/j.issn.1001-0505.2013.05.034 LI Zhaoxia. State of the art in multi-scale damage prognosis for major infrastructures [J]. Journal of Southeast University (Natural Science Edition), 2013, 43(5): 1111 − 1121. (in Chinese) doi: 10.3969/j.issn.1001-0505.2013.05.034
[10] LI G, ZHANG H, WANG R, et al. Seismic damage characteristics and evaluation of aboveground-underground coupled structures [J]. Engineering Structures, 2023, 283: 115871. doi: 10.1016/j.engstruct.2023.115871
[11] 史兆龙, 李钢, 董志骞, 等. 综合体建筑震后交通流线功能损失量化评估方法[J/OL]. https://www.engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2023.03.0200, 2023-09-11. SHI Zhaolong, LI Gang, DONG Zhiqian, el at. Quantitative evaluation method for traffic flow lines function loss of post-earthquake complex buildings [J/OL]. https://www.engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2023.03.0200, 2023-09-11. (in Chinese)
[12] 丛阳, 余丁浩, 李钢, 等. 城市综合体多层级功能损失及抗震韧性评估方法[J]. 建筑结构学报, 2023, 44(7): 1 − 14. CONG Yang, YU Dinghao, LI Gang, et al. Multi-level function loss and seismic resilience assessment method of urban complex [J]. Journal of Building Structures, 2023, 44(7): 1 − 14. (in Chinese)
[13] LI Z X, JIANG F F, TANG Y Q. Multi-scale analyses on seismic damage and progressive failure of steel structures [J]. Finite Elements in Analysis and Design, 2012, 48(1): 1358 − 1369. doi: 10.1016/j.finel.2011.08.002
[14] 张莹, 孙广俊, 李鸿晶. 混凝土结构多尺度建模界面连接方法[J]. 东南大学学报(自然科学版), 2015, 45(1): 126 − 132. ZHANG Ying, SUN Guangjun, LI Hongjing. Interface connection method of multi-scale modeling of concrete structure [J]. Journal of Southeast University (Natural Science Edition), 2015, 45(1): 126 − 132. (in Chinese)
[15] VOLTI S R, CHANDRA N, MILLER J R. Global-local analysis of large-scale composite structures using finite element methods [J]. Computers & Structures, 1996, 58(3): 453 − 464.
[16] 陆新征, 林旭川, 叶列平. 多尺度有限元建模方法及其应用[J]. 华中科技大学学报(城市科学版), 2008, 25(4): 76 − 80. LU Xinzheng, LIN Xuchuan, YE Lieping. Multiscale finite element modeling and its application in Structural analysis [J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2008, 25(4): 76 − 80. (in Chinese)
[17] ZHANG W, LI Y X, SUN L M. SHM-oriented hybrid modeling for stress analysis of steel girder bridge [J]. Journal of Bridge Engineering, 2021, 26(6): 05021002. doi: 10.1061/(ASCE)BE.1943-5592.0001710
[18] YU Y, CHAN T H T, SUN Z H, et al. Mixed-dimensional consistent coupling by multi-point constraint equations for efficient multi-scale modeling [J]. Advances in Structural Engineering, 2012, 15(5): 837 − 853. doi: 10.1260/1369-4332.15.5.837
[19] LU W, CUI Y, TENG J. Mixed-dimensional coupling method for box section member based on the optimal stress distribution pattern [J]. Measurement, 2019, 131: 277 − 287. doi: 10.1016/j.measurement.2018.08.060
[20] 刘超洋, 彭志涵, 何春凯, 等. 一致多尺度组合多点约束法优化研究[J]. 建筑科学, 2020, 36(7): 1 − 7. LIU Chaoyang, PENG Zhihan, HE Chunkai, et al. Research of combined multi-point constraint method for consistent multi-scale modeling [J]. Building Science, 2020, 36(7): 1 − 7. (in Chinese)
[21] 姚俊杰, 郑延丰, 唐敬哲, 等. 基于有限质点法的分布协调式多尺度分析[J/OL]. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2022.11.0958, 2024-05-12. YAO Junjie, ZHENG Yanfeng, TANG Jingzhe, et al. Coordinated distributing multi-scale analysis based on finite particle method [J/OL]. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2022.11.0958, 2024-05-12. (in Chinese)
[22] 石永久, 王萌, 王元清. 基于多尺度模型的钢框架抗震性能分析[J]. 工程力学, 2011, 28(12): 20 − 26. doi: 10.6052/j.issn.1000-4750.2010.03.0208 SHI Yongjiu, WANG Meng, WANG Qingyuan. Seismic behavior analysis of steel frame by multi-scale calculation method [J]. Engineering Mechanics, 2011, 28(12): 20 − 26. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.03.0208
[23] ZHU Q, XU Y L, XIAO X. Multiscale modeling and model updating of a cable-stayed bridge. I: Modeling and influence line analysis [J]. Journal of Bridge Engineering, 2015, 20(10): 04014112. doi: 10.1061/(ASCE)BE.1943-5592.0000722
[24] 陈宇, 李忠献, 李宁. 钢筋混凝土柱地震破坏分析的多尺度建模方法[J]. 工程力学, 2016, 33(6): 46 − 53. doi: 10.6052/j.issn.1000-4750.2014.09.0801 CHEN Yu, LI Zhongxian, LI Ning. Multi-scale modeling for seismic failure analysis of reinforced concrete columns [J]. Engineering Mechanics, 2016, 33(6): 46 − 53. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.09.0801
[25] ZHANG P Z, HOU S, OU J P. A beam- column joint element for analysis of reinforced concrete frame structures [J]. Engineering Structures, 2016, 118: 125 − 136. doi: 10.1016/j.engstruct.2016.03.030
[26] LU H D, LI F, ZHAO Q L, et al. Multi-scale analysis method for composite-metal hybrid truss nodes using the MPC-submodel approach [J]. Structures, 2023, 58: 105419. doi: 10.1016/j.istruc.2023.105419
[27] 吴斌, 王贞, 许国山, 等. 工程结构混合试验技术研究与应用进展[J]. 工程力学, 2022, 39(1): 1 − 20. doi: 10.6052/j.issn.1000-4750.2021.10.ST06 WU Bin, WANG Zhen, XU Guoshan, et al. Research and application progress in hybrid testing of engineering structures [J]. Engineering Mechanics, 2022, 39(1): 1 − 20. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.ST06
[28] WANG T, MCCORMICK J, YOSHITAKE N, et al. Collapse simulation of a four-story steel moment frame by a distributed online hybrid test [J]. Earthquake Engineering & Structural Dynamics, 2008, 37(6): 955 − 974.
[29] HASHEMI M J, MOSQUEDA G. Innovative substructuring technique for hybrid simulation of multistory buildings through collapse [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(14): 2059 − 2074.
[30] MAHMOUD H N, ELNASHAI A S, SPENCER B F, et al. Hybrid simulation for earthquake response of semirigid partial-strength steel frames [J]. Journal of Structural Engineering, 2013, 139(7): 1134 − 1148. doi: 10.1061/(ASCE)ST.1943-541X.0000721
[31] FATEMI H, LAMARCHE C P, PAULTRE P. Hybrid testing of capacity designed RC structural walls for the determination of nonlinear seismic shear amplification [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(12): 3266 − 3287.
[32] 史晓军, 陈隽, 李杰. 层状双向剪切模型箱的设计及振动台试验验证[J]. 地下空间与工程学报, 2009, 5(2): 254 − 261. SHI Xiaojun, CHEN Jun, LI Jie. Design and verification of dual -direction shear laminar box for shaking table test [J]. Chinese Journal of Underground Space and Engineering, 2009, 5(2): 254 − 261. (in Chinese)
[33] IMANPOUR A, LECLERC M, SIGUIER R, et al. Application of hybrid simulation for the evaluation of the buckling response of steel braced frame columns [J]. Ce/papers, 2017, 1(2/3): 2877 − 2886.
[34] CHUNG Y L, NAGAE T, HITAKA T, et al. Seismic resistance capacity of high-rise buildings subjected to long-period ground motions: E-Defense shaking table test [J]. Journal of Structural Engineering, 2010, 136(6): 637 − 644. doi: 10.1061/(ASCE)ST.1943-541X.0000161
[35] NAKATA N, STEHMAN M. Substructure shake table test method using a controlled mass: Formulation and numerical simulation [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 1977 − 1988.
[36] VERMA M, SIVASELVAN M V, RAJASANKAR J. Impedance matching for dynamic substructuring [J]. Structural Control and Health Monitoring, 2019, 26(11): e2402.
[37] JI J B, DING Z, WANG C G. Study of shaking table substructure test loading by inertial mass [J]. Journal of Physics: Conference Series, 2021, 1732(1): 012141. doi: 10.1088/1742-6596/1732/1/012141
[38] TIAN Y P, WANG T, ZHOU H M, et al. Shaking-table substructure test using a MDOF boundary-coordinating device [J]. Earthquake Engineering & Structural Dynamics, 2022, 51(15): 3658 − 3679.
[39] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016. GB50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)