基于动态Kriging的混合模拟缩尺模型非完全相似误差预测与控制

NON-EXACTLY SIMILARITY ERROR PREDICTION AND CONTROL FOR HYBRID SIMULATION SCALING MODEL UPON DYNAMIC KRIGING

  • 摘要: 在缩尺混合模拟中,受限于试验场地与模型制作,完全相似缩尺模型难以实现,非完全相似误差不可避免。基于此,提出基于动态Kriging模型的非完全相似误差预测与控制方法,用于优化混合模拟缩尺模型设计,提高混合模拟精度。以1/2缩尺钢框架模型为例,数值模拟结果表明:在不同边界条件下,动态Kriging模型均具有较高的预测精度,动态Kriging模型预测值与真实值之间的最大绝对误差不超过5%。在优化后的设计空间内取值,非完全相似误差大幅降低并控制在45%内,采用最优参数组合,非完全相似误差降到35%以内,实现了对误差的控制,为缩尺模型混合模拟模型优化设计奠定了基础。

     

    Abstract: In reduced-scale modal hybrid simulation, the constraints of test site and of modal construction pose challenges in achieving a fully analogous scaled model, resulting in unavoidable non-exactly similarity error. Consequently, A dynamic Kriging model-based error prediction and control approach are proposed to optimize the design of hybrid simulation scale model and to enhance the precision of hybrid simulation. Taking the 1/2 scaled steel frame model as an example, the maximum absolute error between the predicted and true values does not exceed 5% for different boundary conditions. It is shown that all the dynamic Kriging models have high prediction accuracy. The non-exactly similarity error is controlled under 45%, which is shown to be well achieved after factor values being taken in the optimized design space. Error control was achieved after using the optimal combination of parameter values, and the non-exactly similarity error was reduced to less than 35%. It establishes the groundwork for designing the reduced-scale model hybrid simulation.

     

/

返回文章
返回