基于历史桥检数据的既有桥梁技术状况退化模型更新

BAYESIAN UPDATING OF BRIDGE CONDITION DETERIORATION MODEL USING HISTORIC INSPECTION DATA

  • 摘要: 对运营状态下的桥梁,预测其未来的技术状况对全寿命管养十分重要,但目前已有的退化预测方法对检测数据的完备性有较高要求。针对我国桥梁检测数据保存不系统、不完善的现状,该文结合状态停留时间的概念,提出了基于历史桥检数据的既有桥梁技术状况退化模型的更新方法,该方法假设桥梁各技术状况的停留时间服从独立正态分布,给出贝叶斯更新似然函数表达式,利用历史桥检数据对停留时间模型进行更新,并结合马尔科夫模型进一步推导出基于当前状况、停留时间和后续服役时间的状态转移概率表达式。利用数值算例验证了本文方法的准确性,并探讨了桥检数据的数据量、完备性、检测精度对更新结果的影响。最后,结合某城市185座钢筋混凝土梁式桥上部结构的历史检测数据对该文方法的应用进行了展示,得到了不同技术状况的停留时间模型,并对这些桥梁的未来退化趋势进行了预测。

     

    Abstract: Predicting the future condition of existing bridges is important for bridge management. Current methods for condition prediction of existing bridges have high requirements for completeness of bridge inspection data. In view of the current situation of unsystematic and incomplete storage of bridge inspection data in our country, this paper combines the concept of Time-in-Condition (TC) and proposes the condition deterioration model updating method for existing bridges using historic inspection data. By assuming TCs follow independent normal distributions, the likelihood function is given to Bayesian update the probability distributions of TC models. Combined with Markov chain model, the formulas for the calculation of condition transition probabilities are derived based on current condition, time in current condition and service time in future. The accuracy of the proposed method is verified through numerical examples, and the effects of data amount, data completeness and data accuracy are explored. Finally, the proposed method is applied to the condition prediction of the superstructures of reinforced concrete bridges of a city using the real inspection data of 185 bridges, the TC models are updated for different conditions, and the future deterioration risk is evaluated.

     

/

返回文章
返回