利用等效砌体材料模型分析爆炸荷载作用下砌体墙碎片尺寸分布

ANALYSIS OF FRAGMENT SIZE DISTRIBUTION OF MASONRY WALL UNDER BLAST LOADS USING HOMOGENIZED MASONRY MATERIAL

  • 摘要: 爆炸碎片导致的次生破坏和人员伤亡往往是巨大的,正确了解建筑物结构可能产生的碎片分布对其抗爆防爆设计至关重要。该文基于连续损伤力学和微裂缝发展的理论,提出了一种采用等效材料模型分析砌体墙结构在爆炸荷载作用下可能产生的碎片尺寸分布的数值方法,等效材料模型考虑了应变率对材料强度的影响。通过与材料精细模型的对比分析,证明了等效材料模型的可靠性;所提出的数值方法有效地提高了爆炸荷载作用下砌体墙碎片分布的计算效率,可用于预测砌体墙在一定爆炸事件中可能产生的碎片尺寸分布。

     

    Abstract: Secondary fragments caused by explosion events are likely to induce serious casualty and disaster, so it is important to predict the probable properties of produced fragment for structural explosion design. In this paper, a numerical method for predicting fragments caused by damage of masonry wall impacted by blast pressure is proposed, which is derived by the application of continuum damage mechanics and micro-crack development mechanics in finite element method, and a homogenized material model is employed to represent the general masonry material properties. In order to refine the material model, strain rate effect of material strength is taken into account. The results demonstrated in this paper reflect that the homogenized masonry material model is reliable and more efficient to calculate the fragment size distribution. It is concluded that this numerical method can be used to predict the fragment size distribution of masonry wall in blast events.

     

/

返回文章
返回