用无网格径向点插值法分析弹性地基厚板弯曲

BENDING ANALYSIS OF THICK PLATE ON THE ELASTIC FOUNDATION BY THE MESHLESS RADIAL POINT INTERPOLATION METHOD

  • 摘要: 利用无网格径向点插值方法对Pasternak弹性地基厚板弯曲进行了分析计算。采用Mindlin平板理论,通过最小位能原理建立了弹性地基上各向同性厚板的伽辽金整体弱式方程,形函数采用径向点插值法构造,具有Kronecker Delta函数性质,因此可以很方便地施加本质边界条件。在计算刚度矩阵时需要建立全域的“背景网格”进行积分。算例表明:用无网格径向点插值法分析弹性地基厚板问题具有效率高、精度高和易于实现等优点。

     

    Abstract: Bending problem of thick plate on the Pasternak elastic foundation is analyzed by the meshless radial point interpolation method in this paper. The global Galerkin weak-form equation of isotropic thick plate on the elastic foundation is established based on Mindlin plate theory and the minimum total potential energy principle. The shape functions constructed using the radial point interpolation method (RPIM) possess Kronecker Delta function properties, so the essential boundary conditions can be easily imposed. The background mesh is required in performing the integral of the stiffness matrix. Numerical examples show that the presented method has such advantages as high efficiency , good accuracy and easy implementation.

     

/

返回文章
返回