含裂纹的矩形截面压电材料反平面问题的应力场和电场

刘淑红, 段士杰, 齐月芹, 邹振祝

刘淑红, 段士杰, 齐月芹, 邹振祝. 含裂纹的矩形截面压电材料反平面问题的应力场和电场[J]. 工程力学, 2004, 21(1): 37-41.
引用本文: 刘淑红, 段士杰, 齐月芹, 邹振祝. 含裂纹的矩形截面压电材料反平面问题的应力场和电场[J]. 工程力学, 2004, 21(1): 37-41.
LIU Shu-hong, DUAN Shi-jie, QI Yue-qin, ZOU Zhen-zhu. STRESS FIELD AND ELECTRIC FIELD OF A PIEZOELECTRIC MATERIAL WITH A MODE-Ⅲ CRACK[J]. Engineering Mechanics, 2004, 21(1): 37-41.
Citation: LIU Shu-hong, DUAN Shi-jie, QI Yue-qin, ZOU Zhen-zhu. STRESS FIELD AND ELECTRIC FIELD OF A PIEZOELECTRIC MATERIAL WITH A MODE-Ⅲ CRACK[J]. Engineering Mechanics, 2004, 21(1): 37-41.

含裂纹的矩形截面压电材料反平面问题的应力场和电场

详细信息
  • 中图分类号: O346

STRESS FIELD AND ELECTRIC FIELD OF A PIEZOELECTRIC MATERIAL WITH A MODE-Ⅲ CRACK

  • 摘要: 研究了含裂纹的矩形截面的压电材料在平面内电场和反平面荷载作用下的问题.得到了满足拉普拉斯方程、电渗透裂纹面边界条件的位移函数解和电势函数解,从而得到了电场和弹性场的基本解.最后,用边界配置法计算了应力强度因子和能量释放率.结果表明,这种半解析半数值的方法计算简便,而且具有足够的精确性和广泛的应用性.
    Abstract: A rectangular piezoelectric material with a mode-Ⅲ crack under the action of in-plane electric loading and anti-plane loading is investigated. General solutions are obtained, which satisfy both Laplace equation and the permeable crack conditions. A boundary collocation method is used to calculate the stress intensity factor and energy release rate. It is shown that the semi-analytical method is simple, accurate and widely applicable.
计量
  • 文章访问数:  747
  • HTML全文浏览量:  19
  • PDF下载量:  307
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-07-29
  • 修回日期:  2003-01-05
  • 刊出日期:  2004-01-14

目录

    /

    返回文章
    返回