多分形特性的子波分析及其在Rayleigh-Benard对流温度信号中的应用

WAVELET ANALYSIS OF MULTIFRACTAL CHARACTERISTICS AND ITS APPLICATION TO PROCESSING TEMPERATURE DATA IN RAYLEIGH-BENARD CONVECTION

  • 摘要: 本文采用子波分析方法,首先对一给定信号的奇异性作了分析,然后利用子波变换极大模(WTMM)理论,对三分Cantor集的分形特性作了研究,在此基础上,将WTMM理论应用于Rayleigh-Benard对流的温度信号。研究结果表明,子波方法不仅能够准确判别出信号奇异点的位置,而且还能具体给出描述该奇异强度的Holder指数h(x)的大小;且能够给出描述奇异信号的分形(包括多分形)的各种参数,如hD(h)、τ(q)等。应用于Rayleigh-Benard对流温度信号后,发现温度信号是多分形的,它的多层次,多尺度的结构完全可由多分形谱反映出来,所得结果与采用测度理论中微元覆盖的方法得到的分形参数吻合较好。

     

    Abstract: In this paper, Wavelet transform is used to analyze the singularity of a given signal. Based on the method of wavelet transform mudulus maxima (WTMM), the characters of fractal set of triadic Cantor is studied. It is shown that one can, not only determine the singular position of signal, but also estimate the Holder exponent h which describes the strength of singularity and other parameters correctly. In addition, the temperature data in Rayleigh-Benard convection is studied using the above procedures. It is observed that the temperature data exhibit multi-fractal hierarchy and multi-scale structures. The obtained results agree well with those determined from the viewpoint of fractal measures.

     

/

返回文章
返回