Abstract:
In order to study the interaction mechanism between vehicles and the pavement, a vehicle-pavementsubgrade interaction system is established by simplifying a moving vehicle as a 1/2 suspension model with four degrees of freedom and modeling the asphalt pavement as an infinite two-layer Kirchhoff plate on Kelvin foundation. By means of Fourier integral transform, the analytical solutions of dynamic responses of the pavement are derived by linking pavement surface roughness and a moving vehicle. The vibration characteristics of pavement under moving stochastic loads are analyzed by a numerical method. A parameter study then follows to show the effect of pavement surface roughness, loading capacity, suspension stiffness, suspension damping, tire stiffness, and tire damping on the dynamic responses of the pavement structure. A full systematic method to study the pavement damage due to vehicles is made. The results show that improving the pavement surface roughness level, prohibiting vehicle overload and tire overpressure, and optimizing suspension stiffness and suspension damping can reduce the dynamic response of the pavement structure effectively. The conclusions obtained from this work may be benefit to avoiding pavement early damage and extending pavement life-span.