悬链线斜靠式拱肋系侧倾失稳临界荷载

刘爱荣, 汪荷玲, 禹奇才, 张俊平

刘爱荣, 汪荷玲, 禹奇才, 张俊平. 悬链线斜靠式拱肋系侧倾失稳临界荷载[J]. 工程力学, 2013, 30(10): 162-170. DOI: 10.6052/j.issn.1000-4750.2012.06.0460
引用本文: 刘爱荣, 汪荷玲, 禹奇才, 张俊平. 悬链线斜靠式拱肋系侧倾失稳临界荷载[J]. 工程力学, 2013, 30(10): 162-170. DOI: 10.6052/j.issn.1000-4750.2012.06.0460
LIU Ai-rong, WANG He-ling, YU Qi-cai, ZHANG Jun-ping. LATERAL BUCKLING CRITICAL LOAD OF LEANING-TYPE ARCH RIBS SYSTEM WITH CATENARY CURVE ARCH AXIS[J]. Engineering Mechanics, 2013, 30(10): 162-170. DOI: 10.6052/j.issn.1000-4750.2012.06.0460
Citation: LIU Ai-rong, WANG He-ling, YU Qi-cai, ZHANG Jun-ping. LATERAL BUCKLING CRITICAL LOAD OF LEANING-TYPE ARCH RIBS SYSTEM WITH CATENARY CURVE ARCH AXIS[J]. Engineering Mechanics, 2013, 30(10): 162-170. DOI: 10.6052/j.issn.1000-4750.2012.06.0460

悬链线斜靠式拱肋系侧倾失稳临界荷载

基金项目: 国家自然科学基金项目(11272095)
详细信息
    作者简介:

    汪荷玲(1986―),女,湖北黄梅人,硕士,从事桥梁结构防灾减灾研究(E-mail: 490865409@qq.com); 禹奇才(1955―),男,湖南双峰人,教授,硕士,从事桥梁结构防灾减灾研究(E-mail: zhydxs@ihw.com.cn); 张俊平(1968―),男,甘肃庆阳人,教授,博士,从事桥梁结构防灾减灾研究(E-mail: 13808861313@139.com).

    通讯作者:

    刘爱荣(1972―),女,山西吕梁人,教授,博士,从事桥梁结构防灾减灾研究(E-mail:liu-a-r@163.com).

  • 中图分类号: TU318

LATERAL BUCKLING CRITICAL LOAD OF LEANING-TYPE ARCH RIBS SYSTEM WITH CATENARY CURVE ARCH AXIS

  • 摘要: 基于能量分析方法,推导了主拱肋和稳定拱肋拱轴线为悬链线的斜靠式拱肋系侧倾失稳临界荷载计算公式,并通过与有限元数值计算结果比较,证明了该计算公式的正确性,进一步验证了所提出的拱肋系侧倾失稳时横撑切向和径向力学模型的适用性,并将拱轴线为悬链线和圆弧曲线的斜靠式拱肋系的侧倾失稳临界荷载进行了比对分析,阐明了圆弧曲线代替悬链线斜靠式拱肋系侧倾失稳临界荷载的适用条件。研究结果表明:拱轴线的线型对斜靠式拱肋系的侧倾失稳临界荷载有一定的影响;当稳定拱肋倾角较小时,悬链线拱肋系的侧倾失稳临界荷载与圆弧曲线拱肋系的差异不超过5%;当矢跨比较小时,圆弧曲线拱肋系代替悬链线拱肋系的侧倾失稳临界荷载产生的误差在10%以下,但矢跨比较大时,二者的差异较大,不可等同。
    Abstract: Based on energy analysis method, the calculation formula of lateral buckling critical load of the leaning-type arch ribs with the catenary arch axis is derived. Compared with the results obtained from FEM, the analytical solution formula presented is verified in this paper. The applicability of the lateral and radial mechanical models of transverse brace between the main arch rib and stable arch rib proposed are validated. Furthermore, the lateral buckling critical load under circular arch axis and catenary are compared, while the quantity relationship and the applicable condition that replacing the lateral buckling critical load of catenary arch with the circular arch are analyzed. It is shown that the line-type of arch axis has a certain extent impact on the lateral buckling critical load of the leaning-type arch ribs. When the incline angle of stable ribs is small, the difference of the lateral buckling critical load between the catenary arch rib system and circular arch rib system is less than 5%. The error induced by the lateral buckling critical load of circular arch rib system replacing that of the catenary arch rib system will be less than 10% when the rise-span ratios are small enough. With the increasing of rise-span ratios, the differences will increase and the replacement is not feasible.
  • [1] 刘爱荣, 禹奇才, 宋瑞, 张俊平. 地震作用下斜靠式拱桥的动力稳定性[J]. 深圳大学学报, 2010, 27(3): 286―290.
    Liu Airong, Yu Qicai, Song Rui, Zhang Junping. Dynamic stability of leaning-type arch bridge under earthquake [J]. Journal of Shenzhen Science and Engineering, 2010, 27(3): 286―290. (in Chinese)
    [2] Richard M, Andreas A. Field testing and simulation of dynamic properties of a tied arch railway bridge [J]. Engineering Structures, 2006, 28: 143―152.
    [3] Laurent, N. Vincent de Ville de Goyet, Ren#x000e9; Maquoi. Optimum bracing of the arches of tied-arch bridges [J]. Journal of Constructional Steel Research, 1991, 18: 239―249.
    [4] Nazmy A S. Stability and load-carrying capacity of three-dimensional long-span steel arch bridges [J]. Computers and Structures, 1997, 65(6): 857―868.
    [5] 李国豪. 桥梁结构稳定与振动[M]. 北京: 中国铁道出版社, 1996.
    Li Guohao. Stability and vibrations of bridge structures [M]. Beijing: China Railway Publishing House, 1996. (in Chinese)
    [6] 陈淮, 胡锋, 申哲会, 杨磊. 斜靠式拱桥稳定性分析 [J]. 福州大学学报, 2005, 33: 182―186.
    Chen Huai, Hu Feng, Shen Zhehui, Yang Lei. Stability analysis of leaning-type arch bridge [J]. Journal of Fuzhou University, 2005, 33: 182―186. (in Chinese)
    [7] 刘爱荣, 申富林, 邝钜滔, 张俊平, 禹奇才. 斜靠式拱肋系侧倾失稳临界荷载计算方法[J]. 工程力学, 2011, 28(12): 166―172.
    [8] 刘爱荣, 申富林, 张俊平, 禹奇才, 汪荷玲. 斜靠式拱肋系侧倾失稳临界荷载计算方法[J]. 土木工程学报, 2012, 45(4): 107―116.
    [9] 项海帆. 拱结构的稳定与振动[M]. 北京: 人民交通出版社, 1991: 75―123.
    [10] 钱莲萍, 项海帆. 空间拱桥结构侧倾稳定性的实用计算[J]. 同济大学学报, 1989, 17(2): 161―172.
    [11] 金伟良, 赵国藩. X型双肋拱系的侧倾屈曲[J]. 土木工程学报, 1989, 22(2): 44―45.
    [12] 杨永清. 抛物线双肋拱在非保向力作用下的横向稳定性[J]. 西南交通大学, 2003, 38(3): 310―313.
    [13] 陈彦江. 大跨度钢管混凝土拱桥的横向稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2001.
    [14] 刘钊, 吕志涛. 有横撑系杆拱桥的侧向稳定承载力[J]. 工程力学, 2004, 21(3): 21―24, 54.
    Liu Zhao, L#x000fc; Zhitao. Lateral buckling load of tied-arch bridges with transverse braces [J]. Engineering Mechanics, 2004, 21(3): 21―24, 54. (in Chinese)
    [15] Gazetas G, Garini E, Anastasopoulos, Georgarakos T. Effect of near-fault ground shaking on sliding systems [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1906―1921.
    [16] 克拉夫R, 彭津J. 结构动力学[M]. 王光远, 等, 译. 北京: 高等教育出版社, 2007: 34―36.
    Clough R, Penzien J. Dynamics of structures [M]. Translated by Wang Guangyuan, et al. Beijing: Higher Education Press, 2007: 34―36. (in Chinese)
    [17] Kramer S L. Geotechnical earthquake engineering [M]. Prentice Hall, New Jersey, 1996: 130―147.
    [18] Dicleli M, Bruneau M. An energy approach to sliding of single-span simply supported slab-on-girder steel highway bridges with damaged bearings [J]. Earthquake Engineering and Structural Dynamics, 1995, 24(3): 395―409.
    [19] Dicleli M, Buddar S. Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges [J]. Earthquake Engineering and Structural Dynamics, 2006, 35: 233―250.
计量
  • 文章访问数:  335
  • HTML全文浏览量:  26
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-27
  • 修回日期:  2013-01-14
  • 刊出日期:  2013-10-24

目录

    /

    返回文章
    返回