留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临界电流密度的非均匀性对超导薄板电磁力学特性的影响

杨育梅 马蓉蓉 雷芳明

杨育梅, 马蓉蓉, 雷芳明. 临界电流密度的非均匀性对超导薄板电磁力学特性的影响[J]. 工程力学, 2023, 40(9): 247-256. doi: 10.6052/j.issn.1000-4750.2022.01.0011
引用本文: 杨育梅, 马蓉蓉, 雷芳明. 临界电流密度的非均匀性对超导薄板电磁力学特性的影响[J]. 工程力学, 2023, 40(9): 247-256. doi: 10.6052/j.issn.1000-4750.2022.01.0011
YANG Yu-mei, MA Rong-rong, LEI Fang-ming. EFFECT OF NON-UNIFORMITY OF CRITICAL CURRENT DENSITY ON ELECTROMAGNETIC MECHANICAL PROPERTIES OF SUPERCONDUCTING THIN STRIP[J]. Engineering Mechanics, 2023, 40(9): 247-256. doi: 10.6052/j.issn.1000-4750.2022.01.0011
Citation: YANG Yu-mei, MA Rong-rong, LEI Fang-ming. EFFECT OF NON-UNIFORMITY OF CRITICAL CURRENT DENSITY ON ELECTROMAGNETIC MECHANICAL PROPERTIES OF SUPERCONDUCTING THIN STRIP[J]. Engineering Mechanics, 2023, 40(9): 247-256. doi: 10.6052/j.issn.1000-4750.2022.01.0011

临界电流密度的非均匀性对超导薄板电磁力学特性的影响

doi: 10.6052/j.issn.1000-4750.2022.01.0011
基金项目: 国家自然科学基金地区科学基金项目(11962015);国家自然科学基金青年科学基金项目(11402106)
详细信息
    作者简介:

    马蓉蓉(1996−),女,甘肃人,硕士生,主要从事高温超导材料力学研究(E-mail: 2865854763@qq.com)

    雷芳明(1985−),男,甘肃人,讲师,硕士,主要从事电磁固体力学与智能材料研究(E-mail: leifm@lut.edu.cn)

    通讯作者:

    杨育梅 (1984−),女,甘肃人,副教授,博士,主要从事高温超导材料与结构多物理场耦合行为研究以及智能材料微纳米尺度多场耦合特性研究(E-mail: yangymei04@163.com)

  • 中图分类号: O343.1

EFFECT OF NON-UNIFORMITY OF CRITICAL CURRENT DENSITY ON ELECTROMAGNETIC MECHANICAL PROPERTIES OF SUPERCONDUCTING THIN STRIP

  • 摘要: 高温超导材料因其高载流能力、低交流损耗等优点而备受科学界和工程技术领域的广泛关注,然而,在实际应用中出现的一系列电磁力学问题严重阻碍了其在工程技术领域的发展。基于此,该文开展了临界电流密度的非均匀性对矩形超导薄板内电学及力学特性影响的研究。考虑临界电流密度沿超导薄板宽度方向非均匀分布,给出了薄板内感应磁场及感应电流分布的解析表述,基于超导临界态Bean模型和弹性力学平面应力方法,得到了超导薄板内磁通钉扎力、应力、应变及磁致伸缩的解析表达式。计算结果表明,临界电流密度的非均匀性并不改变超导薄板内的磁通钉扎力、应力及应变沿板宽度方向的分布规律。然而,非均匀分布的临界电流密度促使薄板内的磁通线穿透深度增大,超导薄板内的最大压应力值增大,且最大压应力发生的位置随传输电流的增大向薄板中心靠近。当传输电流从最大值减小时,薄板内产生的最大拉应力值减小。临界电流密度非均匀分布时,薄板内发生的最大磁致伸缩量较均匀分布情形下显著减小,磁致伸缩曲线形态发生改变。因此,临界电流密度的非均匀性是超导材料力学和电学性能的研究中不可忽视的因素。
  • 图  1  载流矩形超导薄板示意图

    Figure  1.  Geometric model of rectangular superconducting thin strip

    图  2  超导薄板内的电流分布

    Figure  2.  Current distribution in superconducting thin strip

    图  3  超导薄板内的磁场分布

    Figure  3.  Magnetic field distribution in superconducting thin strip

    图  4  超导薄板的体力分布

    Figure  4.  The body force distribution in the superconducting thin strip

    图  5  超导薄板内的应力分布

    Figure  5.  Stress distribution in the superconducting thin strip

    图  6  超导薄板内的应变分布

    Figure  6.  Strain distribution in the superconducting thin strip

    图  7  超导薄板内的应变随梯度参数β的分布

    Figure  7.  Distribution of strain with gradient parameter β in superconducting thin strip

    图  8  超导薄板内的磁致伸缩分布

    Figure  8.  Magnetostrictive distribution in superconducting thin strip

  • [1] PARK S Y, CHOI H S. Analysis of operating characteristics of a superconducting arc-induction type DC circuit breaker using the maxwell program [J]. Journal of Electrical Engineering and Technology, 2021, 16(3): 861 − 866.
    [2] UTSCHICK C, SOM C, SOUC J, et al. Superconducting wireless power transfer beyond 5 kW at high power density for industrial applications and fast battery charging [J]. IEEE Transactions on Applied Superconductivity, 2021, 31(3): 1 − 10.
    [3] MUKOYAMA S, NAKAO K, SAKAMOTO H, et al. Development of superconducting magnetic bearing for 300 kW flywheel energy storage system [J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1 − 4.
    [4] 周泰翔, 贾军波, 邓扬, 等. 悬浮隧道结构体系与动力响应研究进展[J]. 工程力学, 2022, 39(4): 15 − 28, 85. doi: 10.6052/j.issn.1000-4750.2021.01.0044

    ZHOU Taixiang, JIA Junbo, DENG Yang, et al. Recent developments in the structural system and dynamic response od submerged floating tunnel [J]. Engineering Mechanics, 2022, 39(4): 15 − 28, 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0044
    [5] REN L, GUO S, CHEN G, et al. Experimental research on critical current behavior of various commercial HTS tapes [J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 1 − 6.
    [6] WANG L, WANG Q. Analysis of current and magnetic distributions in REBCO superconducting coated conductors in self and external fields [J]. Journal of Superconductivity & Novel Magnetism, 2014, 27(5): 1159 − 1166.
    [7] IIDA K, HNISCH J, KONDO K, et al. High Jc and low anisotropy of hydrogen doped NdFeAsO superconducting thin film [J]. Scientific Reports, 2021, 11(1): 5636 − 5636. doi: 10.1038/s41598-021-85216-3
    [8] 张妍, 诸嘉慧, 陈盼盼, 等. 0~3.5 T直流背景磁场下第二代高温超导带材临界电流各向异性测试与分析[J]. 电工电能新技术, 2020, 39(7): 24 − 29.

    ZHANG Yan, ZHU Jiahui, CHEN Panpan, et al. Measurement and analysis of critical current anisotropy of the second generation high temperature superconducting tape under 0~3.5T DC background magnetic field [J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(7): 24 − 29. (in Chinese)
    [9] YONG H D, ZHOU Y H. Stress distribution in a flat superconducting strip with transport current [J]. Journal of Applied Physics, 2011, 109(7): 073902.1 − 073902.6.
    [10] HUANG G C, ZHOU Y H. Magnetic and magnetostrictive properties of finite superconducting cylinders containing a cavity [J]. Journal of Applied Physics, 2014, 115(3): 033904.1 − 033904.6.
    [11] 杨育梅, 李志鹏. 高温超导带材超导涂层局部脱粘后的电磁力学行为分析[J]. 力学学报, 2021, 53(5): 1345 − 1354.

    YANG Yumei, LI Zhipeng. The electromagnetic mechanical behavior of a superconducting coating for HTS tapes with local detachment [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1345 − 1354. (in Chinese)
    [12] 廖小伟, 王元清, 石永久, 等. 低温环境下桥梁钢Q345qD疲劳裂纹扩展行为研究[J]. 工程力学, 2018, 35(10): 85 − 91. doi: 10.6052/j.issn.1000-4750.2017.06.0483

    LIAO Xiaowei, WANG Yuanqing, SHI Yongjiu, et al. Experimental study on the fatigue crack growth behavior of bridge steel Q345qD at low temperatures [J]. Engineering Mechanics, 2018, 35(10): 85 − 91. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0483
    [13] 包胜, 赵政烨, 罗强. 应力加载历史对铁磁性材料压磁磁场演变规律的影响[J]. 工程力学, 2021, 38(增刊): 259 − 263. doi: 10.6052/j.issn.1000-4750.2020.06.S032

    BAO Sheng, ZHAO Zhengye, LUO Qiang. Influence of stress loading history on the evolution of piezomagnetic field of ferromagnetic materials [J]. Engineering Mechanics, 2021, 38(Suppl): 259 − 263. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.S032
    [14] IKUTA H, HIROTA N, NAKAYAMA Y, et al. Giant magnetostriction in Bi2Sr2CaCu2O8 single crystal in the superconducting state and its mechanism [J]. Physical Review Letters, 1993, 70(14): 2166 − 2169.
    [15] JOHANSEN T H. Flux-pinning-induced stress and strain in superconductors: Long rectangular slab [J]. Physical Review B, 1999, 59(17): 11187 − 11190.
    [16] JOHANSEN T H. Flux-pinning-induced stress and strain in superconductors: Case of a long circular cylinder [J]. Physical review. B, Condensed Matter, 1999, 60(13): 9690 − 9703.
    [17] JOHANSEN T H, SHANTSEV D V. Magnetostrictive behaviour of thin superconducting disk [J]. Superconductor Science and Technology, 2003, 16(9): 1109 − 1114.
    [18] 徐榜, 高原文. 导电圆形薄板的磁弹性动力响应特征[J]. 工程力学, 2010, 27(6): 240 − 244.

    XU Bang, GAO Yuanwen. Magneto-elastic dynamic response of a thin conductive circular plate [J]. Engineering Mechanics, 2010, 27(6): 240 − 244. (in Chinese)
    [19] YANG Y M, WANG X Z. Flux-pinning-induced stress and magnetostriction in a superconducting strip under combination of transport current and magnetic field [J]. Journal of Applied Physics, 2017, 122(11): 115103 − 115103.
    [20] YANG Y M, WANG X Z. Magnetization and magnetoelastic behavior of a functionally graded rectangular superconductor slab [J]. Journal of Applied Physics, 2014, 116(2): 023901.1 − 023901.7.
    [21] 杨俣. 超导电机复合材料的电磁力学行为研究[D]. 兰州: 兰州大学, 2018.

    YANG Yu. study on electromagnetic mechanical behavior of superconducting motor composites [D]. Lanzhou: Lanzhou University, 2018. (in Chinese)
    [22] 潘远洲, 何天虎, 辛灿杰, 等. 高温超导带材低/变温疲劳性能测试系统的研制[J]. 工程力学, 2020, 37(11): 248 − 256. doi: 10.6052/j.issn.1000-4750.2019.12.0797

    PAN Yuanzhou, HE Tianhu, XIN Canjie, et al. Development of a cryogenic fatigue test facility for high temperature superconducting tapes [J]. Engineering Mechanics, 2020, 37(11): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0797
    [23] 陈志东. 超导材料及结构的力学特性及磁通动力学行为研究[D]. 兰州: 兰州大学, 2020.

    CHEN Zhidong. Study on mechanical properties and flux dynamics of superconducting materials and structures [D]. Lanzhou: Lanzhou University, 2020. (in Chinese)
    [24] ROAS B, SCHULTZ L, SAEMANN-ISCHENKO G. Anisotropy of the critical current density in epitaxial YBa2Cu3Ox films [J]. Physical Review Letters, 1990, 64(4): 479 − 482.
    [25] GRASSO G, HENSEL B, JEREMIE A, et al. Distribution of the transport critical current density in Ag sheathed (Bi, Pb) 2Sr 2Ca 2Cu 3O x tapes produced by rolling [J]. Physical C Superconductivity, 1995, 241(1/2): 45 − 52.
    [26] TSUKAMOTO O. AC losses in a type II superconductor strip with inhomogeneous critical current distribution [J]. Superconductor Science and Technology, 2005, 18(5): 596 − 605.
    [27] INADA R. Numerical analysis for AC losses in single-layer cables composed of rectangular superconducting strips with various lateral Jc distributions [J]. Journal of Physics: Conference Series, 2008, 97: 012324 − 012329. doi: 10.1088/1742-6596/97/1/012324
    [28] 赵玉峰. 考虑非均匀临界电流密度效应的高温超导体磁通跳跃与交流损耗的理论研究[D]. 兰州: 兰州大学, 2009.

    ZHAO Yufeng. Theoretical investigation of magnetic flux jumps and AC losses in high-temperature superconductors under consideration of nom-uniform distribution of critical current density [D]. Lanzhou: Lanzhou University, 2009. (in Chinese)
    [29] YANG Y M, WANG X Z. Stress and magnetostriction in an infinite hollow superconducting cylinder with a filling in its central hole [J]. Physica C Superconductivity & Its Applications, 2013, 485(1): 58 − 63.
    [30] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响[J]. 物理学报, 2019, 68(18): 285 − 294.

    CHENG Peng, YANG Yumei. Effect of critical current density on mechanical properties of cylindrical superconductors [J]. Journal of Physics, 2019, 68(18): 285 − 294. (in Chinese)
    [31] 赵宪锋, 周又和. 临界电流密度对场冷超导磁悬浮力的影响研究[J]. 低温与超导, 2011, 39(1): 37 − 41.

    ZHAO Xianfeng, ZHOU Youhe. Study on the effect of critical current density on field cooled superconducting magnetic levitation force [J]. Cryogenics & Superconductivity, 2011, 39(1): 37 − 41. (in Chinese)
    [32] NORRIS W T. Calculation of hysteresis losses in hard superconductors carrying AC: isolated conductors and edges of thin sheets [J]. Journal of Physics D Applied Physics, 1970, 3(4): 489 − 506. doi: 10.1088/0022-3727/3/4/308
  • 加载中
图(8)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  55
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-03
  • 修回日期:  2022-04-14
  • 网络出版日期:  2022-04-23
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回