留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环氧基结构胶接头的冲击力学性能表征

应鹏飞 葛宇龙 赵天琪 夏勇

应鹏飞, 葛宇龙, 赵天琪, 夏勇. 环氧基结构胶接头的冲击力学性能表征[J]. 工程力学, 2023, 40(9): 224-237. doi: 10.6052/j.issn.1000-4750.2022.01.0015
引用本文: 应鹏飞, 葛宇龙, 赵天琪, 夏勇. 环氧基结构胶接头的冲击力学性能表征[J]. 工程力学, 2023, 40(9): 224-237. doi: 10.6052/j.issn.1000-4750.2022.01.0015
YING Peng-fei, GE Yu-long, ZHAO Tian-qi, XIA Yong. CHARACTERIZATION OF IMPACT RESPONSE FOR JOINTS OF EXPOXY-BASED STRUCTURAL ADHEIVES[J]. Engineering Mechanics, 2023, 40(9): 224-237. doi: 10.6052/j.issn.1000-4750.2022.01.0015
Citation: YING Peng-fei, GE Yu-long, ZHAO Tian-qi, XIA Yong. CHARACTERIZATION OF IMPACT RESPONSE FOR JOINTS OF EXPOXY-BASED STRUCTURAL ADHEIVES[J]. Engineering Mechanics, 2023, 40(9): 224-237. doi: 10.6052/j.issn.1000-4750.2022.01.0015

环氧基结构胶接头的冲击力学性能表征

doi: 10.6052/j.issn.1000-4750.2022.01.0015
详细信息
    作者简介:

    应鹏飞(1997−),男,浙江人,博士生,主要从事材料性能表征研究(E-mail: ypf21@mails.tsinghua.edu.cn)

    葛宇龙(1988−),男,山东人,博士,主要从事材料性能和计算力学研究(E-mail: aaronge88@126.com)

    赵天琪(1997−),女,黑龙江人,硕士生,主要从事材料表征和电池力学建模(E-mail: ztq19@mails.tsinghua.edu.cn)

    通讯作者:

    夏 勇(1976−),男,安徽人,副研究员,博士,博导,主要从事材料性能表征和电池碰撞安全研究(E-mail: xiayong@tsinghua.edu.cn)

  • 中图分类号: O39

CHARACTERIZATION OF IMPACT RESPONSE FOR JOINTS OF EXPOXY-BASED STRUCTURAL ADHEIVES

  • 摘要: 胶接是常见于轻量化车身制造的连接方式,胶接接头的失效行为建模是轻量化车身碰撞安全设计的重要前提。针对高韧性环氧基结构胶,该文选择了一种考虑应力状态、应变率效应和损伤累积的弹塑性本构模型表征其复杂冲击力学响应,以提高胶接接头失效模型的准确性。围绕此本构模型,开发了便于实施的模型参数识别方法和标定流程,建立了针对两种环氧基结构胶的材料模型。通过开展胶材本体、胶接接头及胶接结构等多层级冲击破坏实验与对应有限元仿真,验证了所选用的胶粘剂材料模型和胶接接头表征方法的可靠性。
  • 图  1  TAPO模型的主要力学特性[16]

    Figure  1.  The main characters of TAPO model[16]

    图  2  模型相关参数标定和实验设计关系示意图

    Figure  2.  The relation of model parameters and calibration tests

    图  3  标定实验试件几何和具体尺寸 /mm

    Figure  3.  The detailed geometries of specimen used for material calibration

    图  4  验证性实验的试件几何及加载方式 /mm

    Figure  4.  The geometries and settings of verification tests

    图  5  T型构件的实物视图(箭头所指部位为胶接部位)

    Figure  5.  Pictures of T shape specimen (The arrows mark the connected area)

    图  6  不同应变率下Aisin胶材的单向拉伸实验的实验数据与仿真结果比对

    Figure  6.  Result comparison between tests and simulations of uniaxial tension of Aisin adhesive under different strain rates

    图  7  Aisin胶材的其他标定实验和仿真结果比对

    Figure  7.  Result comparison between tests and simulations of verification results of Aisin adhesive

    图  8  Aisin胶材圆筒扭转(纯剪切)和拉扭的实验和仿真结果比对

    Figure  8.  Result comparison between tests and simulations of tension and torsion tests of Aisin adhesive

    图  9  Aisin胶材多角度准静态Arcan实验

    Figure  9.  Multi-angle static Arcan tests of Aisin

    图  10  Aisin胶材动态多角度Arcan实验仿测比对

    Figure  10.  Result comparison between tests and simulations of multi-angle dynamic Arcan tests of Aisin adhesive

    图  11  Aisin胶材T型复杂构件冲击实验及仿测结果比对

    Figure  11.  Result comparison between tests and simulations of impact of T shape specimen of Aisin adhesive

    图  1  Dow胶材的标定实验的仿真和实验结果比对

    Figure  1.  Result comparison between tests and simulations for calibration tests of adhesive of Dow

    图  2  Dow胶材圆筒扭转(纯剪切)和拉扭的实验和仿真结果比对

    Figure  2.  Result comparison between tests and simulations of tension and torsion of adhesive of Dow

    图  3  Dow胶材多角度准静态Arcan实验

    Figure  3.  Result comparison between tests and simulations of multi-angle static Arcan tests of adhesive of Dow

    图  4  Dow胶材动态多角度Arcan实验的仿真和实验结果比对

    Figure  4.  Result comparison between tests and simulations of dynamic multi-angle Arcan tests of adhesive of Dow

    图  5  Dow 胶材T型复杂构建的冲击失效结果和仿真与实验的结果比对

    Figure  5.  Result comparison between test and simulation of impact of T shape specimen of adhesive of Dow

    图  6  结构胶粘剂的单向拉伸材料塑性应变关系特性[37]

    Figure  6.  The character of plastic strain of structural adhesives in uniaxial tension tests[37]

    表  1  Aisin胶材的TAPO模型材料参数

    Table  1.   Material parameters of TAPO model of adhesive of Aisin

    弹塑性参数 硬化相关参数 屈服面参数 塑性势参数
    $ E $/MPa $ \nu $ $ {\tau }_{0} $/MPa $ q $/MPa $ b $ $ H $/MPa $ {a}_{10} $ $ {a}_{20} $ $ {a}_{2}^{*} $
    2 140.5 0.37 25.58 6.73 45.84 9.5 0.145 0.465 0.166
    损伤参数 率相关参数
    $ {d}_{1} $ $ {d}_{2} $ $ {d}_{3} $ $ n $ ${d}_{{\rm{I}}1}$ ${d}_{{\rm{I}}2}$ $ C $ $ {d}_{4} $ $ {\dot{r}_{0}} $/s−1
    0.065 0.273 6.53 2 0.059 0.175 0.17 0.6 0.003 6
    下载: 导出CSV

    表  1  Dow所提供胶粘剂的TAPO模型材料参数

    Table  1.   Material parameters of TAPO model of adhesive of Dow

    弹塑性参数 硬化相关参数 屈服面参数 塑性势参数
    $ E $/MPa $\nu$ $ {\tau }_{0} $/MPa $ q $/MPa $ b $ $ H $/MPa $ {a}_{10} $ $ {a}_{20} $ $ {a}_{2}^{*} $
    1 340 0.377 19.1 5.5 21.60 5.63 0.68 0.28 0.238
    损伤参数 率相关参数
    $ {d}_{1} $ $ {d}_{2} $ $ {d}_{3} $ $ n $ ${d}_{{\rm{I}}1}$ ${d}_{{\rm{I}}2}$ $ C $ $ {d}_{4} $ $ {\dot {r}_{0}} $/s−1
    0.08 0.769 4.20 2 0.04 0.294 0.120 0.4 0.001 3
    下载: 导出CSV
  • [1] SYMIETZ D. Structural adhesive bonding: The most innovative joining technique for modern lightweight design, safety and modular concepts-progress report [R]. SAE Technical Paper, 2005.
    [2] FLEGEL H A. The future of adhesive bonding as a joining technique [J]. AutoTechnology, 2002, 2(5): 64 − 67. doi: 10.1007/BF03246730
    [3] 黄小坤, 段树坤, 刘强, 等. 结构胶侧扭约束玻璃柱轴压承载力设计方法研究[J]. 工程力学, 2021, 38(3): 122 − 131. doi: 10.6052/j.issn.1000-4750.2020.04.0280

    HUANG Xiaokun, DUAN Shukun, LIU Qiang, et al. A study on the design method for axial compression resistance of glass columns laterally and torsionally constrained by structural adhesive [J]. Engineering Mechanics, 2021, 38(3): 122 − 131. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0280
    [4] CROW. STRUCTURAL ADHENSIVES from Ploymer Properties Database [DB/OL]. [2021-05-01] https://polymerdatabase.com/Adhesives/Structural%20Adhesives.html, 2022.
    [5] HE X. A review of finite element analysis of adhesively bonded joints [J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 248 − 264. doi: 10.1016/j.ijadhadh.2011.01.006
    [6] EKLIND A, WALANDER T, CARLBERGER T, et al. High cycle fatigue crack growth in Mode I of adhesive layers: modelling, simulation and experiments [J]. International Journal of Fracture, 2014, 190(1): 125 − 146.
    [7] LICARI J J, SWANSON D W. Adhesives technology for electronic applications: materials, processing, reliability [M]. Waltham, US: Elsevier, 2011.
    [8] CHALLITA G, OTHMAN R, KHALIL K. Compression and shear behavior of epoxy SA 80 bulk adhesive over wide ranges of strain rate [J]. Journal of Polymer Engineering, 2016, 36(2): 165 − 171.
    [9] GOGLIO L, PERONI L, PERONI M, et al. High strain-rate compression and tension behaviour of an epoxy bi-component adhesive [J]. International Journal of Adhesion & Adhesives, 2008, 28(7): 329 − 339.
    [10] GODA Y, SAWA T. Study on the effect of strain rate of adhesive material on the stress state in adhesive joints [J]. The Journal of Adhesion, 2011, 87(7/8): 766 − 779. doi: 10.1080/00218464.2011.597308
    [11] PAN W, SCHMIDT R. Strain rate effect in material testing of bulk adhesive [J]. Transactions on the Built Environment, 2006, 87: 107 − 116.
    [12] MACHADO J J M, MARQUES E A S, DA SILVA L F M. Adhesives and adhesive joints under impact loadings: An overview [J]. The Journal of Adhesion, 2018, 94(6): 421 − 452. doi: 10.1080/00218464.2017.1282349
    [13] SILVA M R G, MARQUES E A S, SILVA L. Behaviour under impact of mixed adhesive joints for the automotive industry [J]. Latin American Journal of Solids and Structures, 2016, 13: 835 − 853. doi: 10.1590/1679-78252762
    [14] BANEA M D, SILVA L F M D. Adhesively bonded joints in composite materials: an overview [J]. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials:Design and Applications, 2009, 223(1): 1 − 18. doi: 10.1243/14644207JMDA219
    [15] 李戎, 梁斌, NODA Nao-Aki. 基于临界应力强度因子的胶接对接接头抗拉强度简便预测方法[J]. 工程力学, 2017, 134(11): 218 − 224. doi: 10.6052/j.issn.1000-4750.2016.06.0497

    LI Rong, LIANG Bin. A convenient adhesive strength prediction method for adhesive butt joint in terms of the critical stress intensity factor [J]. Engineering Mechanics, 2017, 134(11): 218 − 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.06.0497
    [16] MARZI S, HESEBECK O, BREDE M, et al. A rate-dependent, elasto-plastic cohesive zone mixed-mode model for crash analysis of adhesively bonded joints [C]// 7th European LS-DYNA conference, 2009.
    [17] 赵波, 吕振华, 吕毅宁. 一种T形胶接接头的简化有限元单元[J]. 工程力学, 2010, 27(5): 68 − 74.

    ZHAO Bo, LYU Zhenhua, LYU Yining. A simplified adhesive bonded tee joint model for finite element analysis [J]. Engineering Mechanics, 2010, 27(5): 68 − 74. (in Chinese)
    [18] 赵超, 戴志成, 钟新谷, 等. 基于Cohesive单元的石拱桥主拱圈二相数值模拟方法[J]. 工程力学, 2021, 38(12): 97 − 106, 117. doi: 10.6052/j.issn.1000-4750.2020.11.0826

    ZHAO Chao, DAI Zhicheng, ZHONG Guxin, et al. A two-phase modeling method based on cohesive element for masonry arches [J]. Engineering Mechanics, 2021, 38(12): 97 − 106, 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0826
    [19] DUNN D J. Engineering and structural adhesives [J]. Rapra Review Reports, 2004, 15(1): 1 − 138.
    [20] IKEGAMI K, TAKESHITA T, MATSUO K, et al. Strength of adhesively bonded scarf joints between glass fibre-reinforced plastics and metals [J]. International Journal of Adhesion and Adhesives, 1990, 10(3): 199 − 206. doi: 10.1016/0143-7496(90)90104-6
    [21] CHARALAMBIDES M N, KINLOCH A J, MATTHEWS F L. Strength prediction of bonded joints [J]. Bolted/Bonded Joints in Polymeric Composites, 1997.
    [22] COGNARD J Y, CRÉAC'HCADEC R, MAURICE J, et al. Analysis of the Influence of Hydrostatic Stress on the Behaviour of an Adhesive in a Bonded Assembly [J]. Journal of Adhesion Science and Technology, 2010, 24(11/12): 1977 − 1994. doi: 10.1163/016942410X507696
    [23] JOUSSET P, RACHIK M. Pressure-dependent plasticity for structural adhesive constitutive modelling [J]. Journal of Adhesion Science and Technology, 2010, 24(11/12): 1995 − 2010. doi: 10.1163/016942410X507704
    [24] MAHNKEN R, SCHLIMMER M. Simulation of strength difference in elasto-plasticity for adhesive materials [J]. International Journal for Numerical Methods in Engineering, 2005, 63(10): 1461 − 1477. doi: 10.1002/nme.1315
    [25] MAURICE J, COGNARD J Y, CREAC’HCADEC R, et al. Characterization and modelling of the 3D elastic–plastic behaviour of an adhesively bonded joint under monotonic tension/compression-shear loads: influence of three cure cycles [J]. Journal of Adhesion Science & Technology, 2013, 27(2): 165 − 181.
    [26] JOUSSET P, RACHIK M. Implementation, identification and validation of an elasto-plastic-damage model for the finite element simulation of structural bonded joints [J]. International Journal of Adhesion and Adhesives, 2014, 50: 107 − 118. doi: 10.1016/j.ijadhadh.2014.01.020
    [27] GREVE L, ANDRIEUX F. Deformation and failure modelling of high strength adhesives for crash simulation [J]. International Journal of Fracture, 2007, 143(2): 143 − 160. doi: 10.1007/s10704-007-9054-9
    [28] DUFOUR L, BOUREL B, LAURO F, et al. A viscoelastic-viscoplastic model with non associative plasticity for the modelling of bonded joints at high strain rates [J]. International Journal of Adhesion & Adhesives, 2016, 70: 304 − 314.
    [29] GRANT L D R, ADAMS R D, SILVA L F M D. Experimental and numerical analysis of single-lap joints for the automotive industry [J]. International Journal of Adhesion & Adhesives, 2009, 29(4): 405 − 413.
    [30] PARK J H, CHOI J H, KWEON J H. Evaluating the strengths of thick aluminum-to-aluminum joints with different adhesive lengths and thicknesses [J]. Composite Structures, 2010, 92(9): 2226 − 2235. doi: 10.1016/j.compstruct.2009.08.037
    [31] SDERKS D, LINDNER A, CRETON C, et al. Cohesive failure of thin layers of soft model adhesives under tension [J]. Journal of applied physics, 2003, 93(3): 1557 − 1566.
    [32] LILJEDAHL C D M, CROCOMBE A D, WAHAB M A, et al. Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach [J]. International Journal of Adhesion & Adhesives, 2007, 27(6): 505 − 518.
    [33] COGNARD J Y, CRÉAC’HCADEC R, SOHIER L, et al. Influence of adhesive thickness on the behaviour of bonded assemblies under shear loadings using a modified TAST fixture [J]. International Journal of Adhesion & Adhesives, 2010, 30(5): 257 − 266.
    [34] 伍凯, 刘晓艺, 陈峰, 等 . 不同荷载条件下型钢-钢纤维混凝土组合结构的界面失效机理研究[J]. 工程力学, 2021, 38(2): 110 − 121. doi: 10.6052/j.issn.1000-4750.2020.04.0206

    WU Kai, LIU Xiaoyi, CHEN Feng, et al. Study on interfacial failure mechanism of steel and steel fiber reinforced concrete composite structure under different loading conditions [J]. Engineering Mechanics, 2021, 38(2): 110 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0206
    [35] CHATAIGNER S, CARON J F, DIAZ A D, et al. Non-linear failure criteria for a double lap bonded joint [J]. International Journal of Adhesion & Adhesives, 2010, 30(1): 10 − 20.
    [36] LISSNER M, ALABORT E, CUI H, et al. On the rate dependent behaviour of epoxy adhesive joints: Experimental characterisation and modelling of mode I failure [J]. Composite Structures, 2018, 189(APR.): 286 − 303.
    [37] BURBULLA F. Kontinuumsmechanische und bruchmechanische Modelle für Werkstoffverbunde [D]. Germany: Kassel University Press GmbH, 2015.
    [38] 杨辛. 胶焊接头在碰撞载荷下失效的模拟方法研究及其应用 [D]. 北京: 清华大学汽车工程系, 2010.

    YANG Xin. Study of Modeling Techniques of Weld-Bonded Joints under Impact Loading [D]. Beijing: The department of automotive engineering of Tsinghua University, 2010. (in Chinese)
    [39] SCHWARZKOPF G, BOBBERT M, TEUTENBERG D, et al. Tolerance Analysis of Adhesive Bonds in Crash Simulation [J]. Procedia CIRP, 2016, 43: 321 − 326.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  97
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-07-11
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回