ELASTIC BUCKLING OF THIN PLATES WITH RECTANGULAR HOLES UNDER COMPRESSION, BENDING, SHEAR AND COMBINED BENDING SHEAR
-
摘要: 该文分析、开发、验证和总结了单个或多个矩形孔对四边简支板在弯曲、压缩、剪切单独受力以及弯剪复合受力时的临界弹性屈曲应力的影响以及其近似闭合形式表达式。表达式的形式基于经典板稳定理论近似,并通过采用ABAQUS壳体有限元的参数研究得到开发和验证。表达式可作为壳体有限元特征屈曲分析的一种方便的替代方法。有限元参数研究表明,孔会产生独特的屈曲模式,孔间距改变会减少或增加板的临界弹性屈曲应力,且间隔足够大时多孔板屈曲应力可用单孔板计算公式代替。经验证的闭合形式表达式及其相关限制旨在足够通用,以适应工程实践中常见的孔尺寸和间距范围。Abstract: Closed-form expressions considering the influence of single or multiple rectangular holes on the critical elastic buckling stress of plates under bending, compression, shearing and combined bending shear are developed, validated and summarized. The expression forms are based on classical plate stability approximations, and are developed and verified by parametric studies employing shell finite elements. The expressions serve as a convenient alternative to shell finite element eigen-buckling analysis. The finite element parameter studies show that holes may produce unique buckling modes, and the change of hole spacing may reduce or increase the critical elastic buckling stress of the plate. When the spacing between holes is long enough, the buckling stress equation of single-hole plate can be used for multiple-hole plate. The validated closed-form expressions and their associated limitations are intended to be versatile enough to accommodate the range of hole sizes and spacings commonly found in engineering practice.
-
Key words:
- steel structure /
- web opening /
- elastic buckling /
- ABAQUS /
- prediction method /
- interaction
-
表 1 不同全局尺寸因子下的特征值
Table 1. Eigenvalues under different global dimension factors
全局尺寸因子/mm 纯压 纯弯 纯剪 2.5 1768.0 10 509 2386.9 5.0 1769.4 10 527 2390.3 10.0 1774.1 10 595 2403.2 15.0 1780.4 10 689 2423.7 20.0 1786.2 10 800 2444.3 表 2 PHAM文献公式与模型对比
Table 2. Comparison of PHAM's equation with modeling results
方孔参数 文献公式 文献模型 本文模型 l0/l kv/kss kv/kss 相对误差/(%) kv/kss 相对误差/(%) 0.00 1.000 0.9987 0.1 0.9987 0.1 0.10 0.875 0.8819 −0.8 0.8824 −0.8 0.20 0.660 0.6680 −1.2 0.6684 −1.3 0.30 0.469 0.4771 −1.7 0.4772 −1.7 0.40 0.326 0.3347 −2.6 0.3344 −2.5 0.50 0.225 0.2361 −4.7 0.2353 −4.4 0.60 0.166 0.1694 −2.0 0.1686 −1.5 0.70 0.120 0.1240 −3.2 0.1236 −2.9 0.80 0.080 0.0926 −13.6 0.0921 −13.1 注:模型与文献完全一致,方板宽度200 mm,厚度1.5 mm。 表 3 弯曲应力和剪切应力局部屈曲相关关系拟合公式的指数系数βb
Table 3. Coefficient βb in the fitting equation of the local buckling correlation between bending stress and shear stress
开孔宽度
h0/mm指数系数βb l0=
15 mml0=
30 mml0=
45 mml0=
60 mml0=
75 mml0=
90 mml0=
105 mml0=
120 mml0=
135 mml0=
150 mml0=
165 mml0=
180 mml0=
195 mml0=
210 mm240 1.701 1.648 1.601 1.555 1.510 1.469 1.432 1.402 1.378 1.362 1.356 1.364 1.392 1.451 270 1.589 1.557 1.529 1.499 1.467 1.436 1.407 1.382 1.363 1.351 1.348 1.357 1.384 1.436 300 1.499 1.480 1.465 1.447 1.427 1.405 1.383 1.364 1.349 1.340 1.340 1.350 1.374 1.419 330 1.429 1.417 1.410 1.401 1.389 1.374 1.359 1.346 1.335 1.330 1.331 1.341 1.362 1.399 360 1.374 1.366 1.363 1.360 1.353 1.345 1.335 1.327 1.320 1.317 1.319 1.329 1.347 1.376 390 1.332 1.325 1.324 1.323 1.321 1.317 1.312 1.307 1.304 1.303 1.306 1.315 1.329 1.353 420 1.298 1.291 1.291 1.292 1.292 1.292 1.290 1.288 1.287 1.288 1.291 1.299 1.311 1.329 450 1.271 1.264 1.264 1.266 1.267 1.269 1.269 1.269 1.270 1.272 1.275 1.282 1.291 1.304 480 1.249 1.242 1.241 1.243 1.246 1.248 1.250 1.251 1.253 1.256 1.260 1.265 1.272 1.281 表 4 弯曲应力和剪切应力局部屈曲相关关系拟合公式的指数βt
Table 4. Coefficient βt in the fitting equation of the local buckling correlation between bending stress and shear stress
开孔宽度
h0/ mm指数系数βb l0=
15 mml0=
30 mml0=
45 mml0=
60 mml0=
75 mml0=
90 mml0=
105 mml0=
120 mml0=
135 mml0=
150 mml0=
165 mml0=
180 mml0=
195 mml0=
210 mm240 1.882 1.859 1.849 1.848 1.854 1.863 1.876 1.893 1.912 1.934 1.953 1.963 1.949 1.890 270 1.839 1.819 1.812 1.814 1.821 1.832 1.845 1.859 1.873 1.884 1.888 1.878 1.842 1.763 300 1.803 1.785 1.778 1.779 1.785 1.793 1.804 1.813 1.819 1.820 1.812 1.787 1.737 1.648 330 1.773 1.755 1.746 1.744 1.747 1.752 1.757 1.760 1.760 1.752 1.733 1.699 1.642 1.549 360 1.746 1.728 1.718 1.712 1.711 1.711 1.710 1.708 1.700 1.685 1.659 1.619 1.558 1.467 390 1.721 1.703 1.691 1.683 1.677 1.672 1.666 1.657 1.644 1.623 1.592 1.548 1.486 1.399 420 1.697 1.680 1.666 1.654 1.645 1.635 1.624 1.611 1.592 1.567 1.533 1.487 1.426 1.344 450 1.674 1.657 1.642 1.628 1.615 1.601 1.586 1.568 1.546 1.517 1.481 1.435 1.376 1.299 480 1.652 1.635 1.619 1.603 1.587 1.570 1.552 1.531 1.505 1.475 1.437 1.391 1.335 1.263 注:拟合值可以有±0.05的调整区间。 -
[1] AZIZIAN Z G, ROBERTS T M. Buckling and elasto-plastic collapse of perforated plates [C]// LJ M. Proceedings of the International Conference on Instability and Plastic Collapse of Steel Structures. London: Granada Publishing, 1983: 392 − 398. [2] 黄晨凯, 赵宝成. 开孔形式影响装配式耗能支撑滞回性能研究[J]. 工程力学, 2021, 38(12): 81 − 96. doi: 10.6052/j.issn.1000-4750.2020.11.0800HUANG Chenkai, ZHAO Baocheng. Influences of the shape of holes on the hysteretic performance of assembled energy dissipation braces [J]. Engineering Mechanics, 2021, 38(12): 81 − 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0800 [3] 朱兆一, 李晓文, 蔡应强, 等. 船体开孔薄板面内剪切屈曲特性研究[J]. 工程力学, 2023, 40(5): 228 − 235. doi: 10.6052/j.issn.1000-4750.2021.11.0863ZHU Zhaoyi, LI Xiaowen, CAI Yingqiang, et al. In-plane shear buckling performance of ship’s thin plates with holes [J]. Engineering Mechanics, 2023, 40(5): 228 − 235. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.11.0863 [4] SHANMUGAM N E, NARAYANAN R. Elastic buckling of perforated square plates for various loading and edge conditions [C]// International Conference on Finite Element Methods. New York: Gordon and Breach, 1982: 658 − 672. [5] SABIR A B, CHOW F Y. Elastic buckling of flat panels containing circular and square holes [C]// LJ M. Proceedings of the International Conference on Instability and Plastic Collapse of Steel Structures. London: Granada Publishing, 1983: 311 − 321. [6] ROBERTS T M, AZIZIAN Z G. Strength of perforated plates subjected to in-plane loading [J]. Thin-Walled Structures, 1984, 2(2): 153 − 164. doi: 10.1016/0263-8231(84)90009-0 [7] KAWAI T, OHTSUBO H. A method of solution for the complicated buckling problems of elastic plates with combined use of Rayleigh-Ritz’s procedure in the finite element method [C]// Proceedings of the Second Conference on Matrix Methods in Structural Mechanics. Ohio: Wright-Patterson Air Force Base, 1968: 967 − 994. [8] BROWN C J, YETTRAM A L. The elastic stability of square perforated plates under combinations of bending, shear and direct load [J]. Thin-Walled Structures, 1986, 4(3): 239 − 246. doi: 10.1016/0263-8231(86)90005-4 [9] BROWN C J, YETTRAM A L, BURNETT M. Stability of plates with rectangular holes [J]. Journal of Structural Engineering, 1987, 113(5): 1111 − 1116. doi: 10.1061/(ASCE)0733-9445(1987)113:5(1111) [10] BROWN C J. Elastic buckling of perforated plates subjected to concentrated loads [J]. Computers & Structures, 1990, 36(6): 1103 − 1109. [11] EL-SAWY K M, NAZMY A S. Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes [J]. Thin-Walled Structures, 2001, 39(12): 983 − 998. doi: 10.1016/S0263-8231(01)00040-4 [12] MOEN C D, SCHAFER B W. Impact of holes on the elastic buckling of cold-formed steel columns with applications to the direct strength method [J]. Eighteenth International Specialty Conference on Cold-formed Steel Structures, 2006: 269 − 283. [13] MOEN C D, SCHAFER B W. Elastic buckling of thin plates with holes in compression or bending [J]. Thin-Walled Structures, 2009, 47(12): 1597 − 1607. doi: 10.1016/j.tws.2009.05.001 [14] MOEN C D. Direct strength design of cold-formed steel members with perforations [M]. Baltimore: The Johns Hopkins University, 2009: 22 − 65. [15] YAO X. The buckling property and effective width calculation method of thin plates with rectangular holes subjected to linearly varying pressure [J]. Industrial Construction, 2021, 51(11): 112 − 120. [16] GUO Y, YAO X. Buckling Behavior and effective width design method for thin plates with holes under stress gradient [J]. Mathematical Problems in Engineering, 2021, 2021: 5550749. [17] 徐秉汉, 郭庆恒. 船舶构件腹板开孔的弹性失稳与加强效果[J]. 中国造船, 1987(3): 60 − 72.XU Binghan, GUO Qingheng. Elastic instability and strengthening effect of ship components with holes [J]. Shipbuilding of China, 1987(3): 60 − 72. (in Chinese) [18] 李波, 王肇民, 赵晖. 梁腹板开有圆孔时的稳定问题研究[J]. 四川建筑科学研究, 2006(1): 62 − 65. doi: 10.3969/j.issn.1008-1933.2006.01.017LI Bo, WANG Zhaomin, ZHAO Hui. Study on stability of web with circular opening [J]. Sichuan Building Science, 2006(1): 62 − 65. (in Chinese) doi: 10.3969/j.issn.1008-1933.2006.01.017 [19] 吕金宝. 冷弯薄壁卷边槽钢梁开圆孔腹板稳定性能研究[D]. 陕西: 西安建筑科技大学, 2009.LYU Jinbao. Study on stability of web with circle openings in cold-formed thin-wall lipped channel beams [D]. Shaanxi: Xi’an University of Architecture and Technology, 2009. (in Chinese) [20] 蒋彬. 工字梁腹板开圆孔弹性屈曲性能研究[D]. 重庆: 重庆交通大学, 2015.JIANG Bin. Study on buckling of web with circle openings in I-shaped beam [D]. Chongqing: Chongqing Jiaotong University, 2015. (in Chinese) [21] 熊宇微. 开孔位置对工字钢梁腹板弹塑性屈曲性能研究[D]. 重庆: 重庆交通大学, 2016.XIONG Yuwei. Study on pored position for the elastic-plastic buckling of web in I-steel beam [D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese) [22] PHAM C H. Shear buckling of plates and thin-walled channel sections with holes [J]. Journal of Constructional Steel Research, 2017, 128: 800 − 811. doi: 10.1016/j.jcsr.2016.10.013 [23] TONG G, FENG Y, TAO W, et al. Elastic stability of plate simply supported on four sides subjected to combined bending shear and patch loading [J]. Thin-Walled Structures, 2016, 107: 377 − 396. doi: 10.1016/j.tws.2016.06.021 -