留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形开孔薄板在压、弯、剪以及弯剪作用下的弹性屈曲

黄逸琳 童根树 张磊

黄逸琳, 童根树, 张磊. 矩形开孔薄板在压、弯、剪以及弯剪作用下的弹性屈曲[J]. 工程力学, 2023, 40(9): 1-12. doi: 10.6052/j.issn.1000-4750.2022.01.0032
引用本文: 黄逸琳, 童根树, 张磊. 矩形开孔薄板在压、弯、剪以及弯剪作用下的弹性屈曲[J]. 工程力学, 2023, 40(9): 1-12. doi: 10.6052/j.issn.1000-4750.2022.01.0032
HUANG Yi-lin, TONG Gen-shu, ZHANG Lei. ELASTIC BUCKLING OF THIN PLATES WITH RECTANGULAR HOLES UNDER COMPRESSION, BENDING, SHEAR AND COMBINED BENDING SHEAR[J]. Engineering Mechanics, 2023, 40(9): 1-12. doi: 10.6052/j.issn.1000-4750.2022.01.0032
Citation: HUANG Yi-lin, TONG Gen-shu, ZHANG Lei. ELASTIC BUCKLING OF THIN PLATES WITH RECTANGULAR HOLES UNDER COMPRESSION, BENDING, SHEAR AND COMBINED BENDING SHEAR[J]. Engineering Mechanics, 2023, 40(9): 1-12. doi: 10.6052/j.issn.1000-4750.2022.01.0032

矩形开孔薄板在压、弯、剪以及弯剪作用下的弹性屈曲

doi: 10.6052/j.issn.1000-4750.2022.01.0032
详细信息
    作者简介:

    黄逸琳(1997−),女,浙江人,硕士生,主要从事钢结构研究(E-mail: 22012046@zju.edu.cn)

    张 磊(1978−),男,浙江人,副教授,博士,博导,主要从事钢结构研究(E-mail: celzhang@zju.edu.cn)

    通讯作者:

    童根树(1963−),男,浙江人,教授,博士,博导,主要从事钢结构的稳定性研究(E-mail: tonggs@zju.edu.cn)

  • 中图分类号: TU391

ELASTIC BUCKLING OF THIN PLATES WITH RECTANGULAR HOLES UNDER COMPRESSION, BENDING, SHEAR AND COMBINED BENDING SHEAR

  • 摘要: 该文分析、开发、验证和总结了单个或多个矩形孔对四边简支板在弯曲、压缩、剪切单独受力以及弯剪复合受力时的临界弹性屈曲应力的影响以及其近似闭合形式表达式。表达式的形式基于经典板稳定理论近似,并通过采用ABAQUS壳体有限元的参数研究得到开发和验证。表达式可作为壳体有限元特征屈曲分析的一种方便的替代方法。有限元参数研究表明,孔会产生独特的屈曲模式,孔间距改变会减少或增加板的临界弹性屈曲应力,且间隔足够大时多孔板屈曲应力可用单孔板计算公式代替。经验证的闭合形式表达式及其相关限制旨在足够通用,以适应工程实践中常见的孔尺寸和间距范围。
  • 图  1  多孔板件参数定义

    Figure  1.  Parameter definition of plates with multiple holes

    图  2  单孔板件参数定义

    Figure  2.  Parameter definition of plates with a single hole

    图  3  边界条件和压缩荷载

    Figure  3.  Boundary conditions and compression loads

    图  4  单孔对均匀压缩四边简支板屈曲应力 σcr的影响(h=300)

    Figure  4.  Influence of a single hole on σcr for uniformly compressed simply-supported plates on four sides (h=300)

    图  5  短均匀压缩四边简支板的屈曲模态(h0/h=0.6, l/l0=4)

    Figure  5.  Buckling modes for short uniformly compressed simply-supported plates on four sides (h0/h=0.6, l/l0=4)

    图  6  开单孔长均匀压缩四边简支板的屈曲模态

    Figure  6.  Buckling modes for long uniformly compressed simply-supported plates on four sides with a single hole

    图  7  多孔对长均匀受压简支板屈曲应力 σcr的影响

    Figure  7.  Influence of multiple holes on σcr for long uniformly compressed simply-supported plates

    图  8  开多孔均匀压缩简支板的屈曲模态

    Figure  8.  Buckling modes for long uniformly compressed simply-supported plates with multiple holes

    图  9  均匀压缩板的ABAQUS屈曲应力 σcr变化

    Figure  9.  ABAQUS σcr variations of uniformly compressed plates

    图  10  净截面到总截面的弹性屈曲应力转换的截面图

    注:σcr2,net为开孔段上方未加劲板边缘纵向应力

    Figure  10.  Diagram of a section of plate demonstrating the elastic bucking stress conversion from the net to the gross section

    图  11  边界条件和纯弯荷载

    Figure  11.  Boundary conditions and bending loads

    图  12  单孔对纯弯简支板屈曲应力 σcr的影响(h=300)

    Figure  12.  Influence of a single hole on σcr for bending simply-supported plates (h=300)

    图  13  开单孔长纯弯四边简支板的屈曲模态

    Figure  13.  Buckling modes for long bending simply-supported plates on four sides with a single hole

    图  14  多孔对长纯弯简支板屈曲应力 σcr的影响

    Figure  14.  Influence of multiple holes on σcr for long bending simply-supported plates

    图  15  纯弯板的ABAQUS屈曲应力值σcr变化

    Figure  15.  ABAQUS σcr variations of bending plates

    图  16  净截面到总截面的弹性屈曲应力转换的截面图

    注:σcr2,net为开孔段上方未加劲板外侧边缘纵向应力;  $\sigma_{{\rm{cr}}2, {\rm{net}}}' $为开孔段上方未加劲板内侧边缘纵向应力

    Figure  16.  Diagram of a section of plate demonstrating the elastic bucking stress conversion from the net to the gross section

    图  17  公式调整示意图

    Figure  17.  Diagram of equation adjustment

    图  18  纯弯板拟合公式与模型结果对比

    Figure  18.  Comparison of fitting equation with modeling results of bending plates

    图  19  边界条件和纯剪荷载

    Figure  19.  Boundary conditions and shear loads

    图  20  单孔对纯剪四边简支板屈曲应力σcr的影响(h=300)

    Figure  20.  Influence of a single hole on σcr for shear simply-supported plates on four sides (h=300)

    图  21  开单孔长纯剪四边简支板的屈曲模态

    Figure  21.  Buckling modes for long shear simply-supported plates on four sides with a single hole

    图  22  开孔导致孔边应力变化

    Figure  22.  Stress change at hole edge caused by opening hole

    图  23  多孔对长纯剪简支板屈曲应力σcr的影响

    Figure  23.  Influence of multiple holes on σcr for long shear simply-supported plates

    图  24  纯剪板拟合公式与模型结果对比

    Figure  24.  Comparison of fitting equation with modeling results of shear plates

    图  25  边界条件和弯剪荷载

    Figure  25.  Boundary conditions and combined bending and shear loads

    图  26  TONG文献与模型的相关关系曲线对比

    Figure  26.  Comparison of correlation curve between TONG’s equation and modeling results

    图  27  板宽对相关关系曲线的影响(h=300)

    Figure  27.  Influence of plate width on correlation curve (h=300)

    图  28  板长对相关关系曲线的影响(h=300)

    Figure  28.  Influence of plate length on correlation curve (h=300)

    图  29  多孔对长弯剪简支板屈曲应力σcr的影响

    Figure  29.  Influence of multiple holes on σcr for long combined bending and shear simply-supported plates

    表  1  不同全局尺寸因子下的特征值

    Table  1.   Eigenvalues under different global dimension factors

    全局尺寸因子/mm纯压纯弯纯剪
    2.51768.010 5092386.9
    5.01769.410 5272390.3
    10.01774.110 5952403.2
    15.01780.410 6892423.7
    20.01786.210 8002444.3
    下载: 导出CSV

    表  2  PHAM文献公式与模型对比

    Table  2.   Comparison of PHAM's equation with modeling results

    方孔参数文献公式文献模型本文模型
    l0/lkv/ksskv/kss相对误差/(%)kv/kss相对误差/(%)
    0.001.0000.99870.10.99870.1
    0.100.8750.8819−0.80.8824−0.8
    0.200.6600.6680−1.20.6684−1.3
    0.300.4690.4771−1.70.4772−1.7
    0.400.3260.3347−2.60.3344−2.5
    0.500.2250.2361−4.70.2353−4.4
    0.600.1660.1694−2.00.1686−1.5
    0.700.1200.1240−3.20.1236−2.9
    0.800.0800.0926−13.60.0921−13.1
    注:模型与文献完全一致,方板宽度200 mm,厚度1.5 mm。
    下载: 导出CSV

    表  3  弯曲应力和剪切应力局部屈曲相关关系拟合公式的指数系数βb

    Table  3.   Coefficient βb in the fitting equation of the local buckling correlation between bending stress and shear stress

    开孔宽度
    h0/mm
    指数系数βb
    l0=
    15 mm
    l0=
    30 mm
    l0=
    45 mm
    l0=
    60 mm
    l0=
    75 mm
    l0=
    90 mm
    l0=
    105 mm
    l0=
    120 mm
    l0=
    135 mm
    l0=
    150 mm
    l0=
    165 mm
    l0=
    180 mm
    l0=
    195 mm
    l0=
    210 mm
    2401.7011.6481.6011.5551.5101.4691.4321.4021.3781.3621.3561.3641.3921.451
    2701.5891.5571.5291.4991.4671.4361.4071.3821.3631.3511.3481.3571.3841.436
    3001.4991.4801.4651.4471.4271.4051.3831.3641.3491.3401.3401.3501.3741.419
    3301.4291.4171.4101.4011.3891.3741.3591.3461.3351.3301.3311.3411.3621.399
    3601.3741.3661.3631.3601.3531.3451.3351.3271.3201.3171.3191.3291.3471.376
    3901.3321.3251.3241.3231.3211.3171.3121.3071.3041.3031.3061.3151.3291.353
    4201.2981.2911.2911.2921.2921.2921.2901.2881.2871.2881.2911.2991.3111.329
    4501.2711.2641.2641.2661.2671.2691.2691.2691.2701.2721.2751.2821.2911.304
    4801.2491.2421.2411.2431.2461.2481.2501.2511.2531.2561.2601.2651.2721.281
    下载: 导出CSV

    表  4  弯曲应力和剪切应力局部屈曲相关关系拟合公式的指数βt

    Table  4.   Coefficient βt in the fitting equation of the local buckling correlation between bending stress and shear stress

    开孔宽度
    h0/ mm
    指数系数βb
    l0=
    15 mm
    l0=
    30 mm
    l0=
    45 mm
    l0=
    60 mm
    l0=
    75 mm
    l0=
    90 mm
    l0=
    105 mm
    l0=
    120 mm
    l0=
    135 mm
    l0=
    150 mm
    l0=
    165 mm
    l0=
    180 mm
    l0=
    195 mm
    l0=
    210 mm
    2401.8821.8591.8491.8481.8541.8631.8761.8931.9121.9341.9531.9631.9491.890
    2701.8391.8191.8121.8141.8211.8321.8451.8591.8731.8841.8881.8781.8421.763
    3001.8031.7851.7781.7791.7851.7931.8041.8131.8191.8201.8121.7871.7371.648
    3301.7731.7551.7461.7441.7471.7521.7571.7601.7601.7521.7331.6991.6421.549
    3601.7461.7281.7181.7121.7111.7111.7101.7081.7001.6851.6591.6191.5581.467
    3901.7211.7031.6911.6831.6771.6721.6661.6571.6441.6231.5921.5481.4861.399
    4201.6971.6801.6661.6541.6451.6351.6241.6111.5921.5671.5331.4871.4261.344
    4501.6741.6571.6421.6281.6151.6011.5861.5681.5461.5171.4811.4351.3761.299
    4801.6521.6351.6191.6031.5871.5701.5521.5311.5051.4751.4371.3911.3351.263
    注:拟合值可以有±0.05的调整区间。
    下载: 导出CSV
  • [1] AZIZIAN Z G, ROBERTS T M. Buckling and elasto-plastic collapse of perforated plates [C]// LJ M. Proceedings of the International Conference on Instability and Plastic Collapse of Steel Structures. London: Granada Publishing, 1983: 392 − 398.
    [2] 黄晨凯, 赵宝成. 开孔形式影响装配式耗能支撑滞回性能研究[J]. 工程力学, 2021, 38(12): 81 − 96. doi: 10.6052/j.issn.1000-4750.2020.11.0800

    HUANG Chenkai, ZHAO Baocheng. Influences of the shape of holes on the hysteretic performance of assembled energy dissipation braces [J]. Engineering Mechanics, 2021, 38(12): 81 − 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0800
    [3] 朱兆一, 李晓文, 蔡应强, 等. 船体开孔薄板面内剪切屈曲特性研究[J]. 工程力学, 2023, 40(5): 228 − 235. doi: 10.6052/j.issn.1000-4750.2021.11.0863

    ZHU Zhaoyi, LI Xiaowen, CAI Yingqiang, et al. In-plane shear buckling performance of ship’s thin plates with holes [J]. Engineering Mechanics, 2023, 40(5): 228 − 235. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.11.0863
    [4] SHANMUGAM N E, NARAYANAN R. Elastic buckling of perforated square plates for various loading and edge conditions [C]// International Conference on Finite Element Methods. New York: Gordon and Breach, 1982: 658 − 672.
    [5] SABIR A B, CHOW F Y. Elastic buckling of flat panels containing circular and square holes [C]// LJ M. Proceedings of the International Conference on Instability and Plastic Collapse of Steel Structures. London: Granada Publishing, 1983: 311 − 321.
    [6] ROBERTS T M, AZIZIAN Z G. Strength of perforated plates subjected to in-plane loading [J]. Thin-Walled Structures, 1984, 2(2): 153 − 164. doi: 10.1016/0263-8231(84)90009-0
    [7] KAWAI T, OHTSUBO H. A method of solution for the complicated buckling problems of elastic plates with combined use of Rayleigh-Ritz’s procedure in the finite element method [C]// Proceedings of the Second Conference on Matrix Methods in Structural Mechanics. Ohio: Wright-Patterson Air Force Base, 1968: 967 − 994.
    [8] BROWN C J, YETTRAM A L. The elastic stability of square perforated plates under combinations of bending, shear and direct load [J]. Thin-Walled Structures, 1986, 4(3): 239 − 246. doi: 10.1016/0263-8231(86)90005-4
    [9] BROWN C J, YETTRAM A L, BURNETT M. Stability of plates with rectangular holes [J]. Journal of Structural Engineering, 1987, 113(5): 1111 − 1116. doi: 10.1061/(ASCE)0733-9445(1987)113:5(1111)
    [10] BROWN C J. Elastic buckling of perforated plates subjected to concentrated loads [J]. Computers & Structures, 1990, 36(6): 1103 − 1109.
    [11] EL-SAWY K M, NAZMY A S. Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes [J]. Thin-Walled Structures, 2001, 39(12): 983 − 998. doi: 10.1016/S0263-8231(01)00040-4
    [12] MOEN C D, SCHAFER B W. Impact of holes on the elastic buckling of cold-formed steel columns with applications to the direct strength method [J]. Eighteenth International Specialty Conference on Cold-formed Steel Structures, 2006: 269 − 283.
    [13] MOEN C D, SCHAFER B W. Elastic buckling of thin plates with holes in compression or bending [J]. Thin-Walled Structures, 2009, 47(12): 1597 − 1607. doi: 10.1016/j.tws.2009.05.001
    [14] MOEN C D. Direct strength design of cold-formed steel members with perforations [M]. Baltimore: The Johns Hopkins University, 2009: 22 − 65.
    [15] YAO X. The buckling property and effective width calculation method of thin plates with rectangular holes subjected to linearly varying pressure [J]. Industrial Construction, 2021, 51(11): 112 − 120.
    [16] GUO Y, YAO X. Buckling Behavior and effective width design method for thin plates with holes under stress gradient [J]. Mathematical Problems in Engineering, 2021, 2021: 5550749.
    [17] 徐秉汉, 郭庆恒. 船舶构件腹板开孔的弹性失稳与加强效果[J]. 中国造船, 1987(3): 60 − 72.

    XU Binghan, GUO Qingheng. Elastic instability and strengthening effect of ship components with holes [J]. Shipbuilding of China, 1987(3): 60 − 72. (in Chinese)
    [18] 李波, 王肇民, 赵晖. 梁腹板开有圆孔时的稳定问题研究[J]. 四川建筑科学研究, 2006(1): 62 − 65. doi: 10.3969/j.issn.1008-1933.2006.01.017

    LI Bo, WANG Zhaomin, ZHAO Hui. Study on stability of web with circular opening [J]. Sichuan Building Science, 2006(1): 62 − 65. (in Chinese) doi: 10.3969/j.issn.1008-1933.2006.01.017
    [19] 吕金宝. 冷弯薄壁卷边槽钢梁开圆孔腹板稳定性能研究[D]. 陕西: 西安建筑科技大学, 2009.

    LYU Jinbao. Study on stability of web with circle openings in cold-formed thin-wall lipped channel beams [D]. Shaanxi: Xi’an University of Architecture and Technology, 2009. (in Chinese)
    [20] 蒋彬. 工字梁腹板开圆孔弹性屈曲性能研究[D]. 重庆: 重庆交通大学, 2015.

    JIANG Bin. Study on buckling of web with circle openings in I-shaped beam [D]. Chongqing: Chongqing Jiaotong University, 2015. (in Chinese)
    [21] 熊宇微. 开孔位置对工字钢梁腹板弹塑性屈曲性能研究[D]. 重庆: 重庆交通大学, 2016.

    XIONG Yuwei. Study on pored position for the elastic-plastic buckling of web in I-steel beam [D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese)
    [22] PHAM C H. Shear buckling of plates and thin-walled channel sections with holes [J]. Journal of Constructional Steel Research, 2017, 128: 800 − 811. doi: 10.1016/j.jcsr.2016.10.013
    [23] TONG G, FENG Y, TAO W, et al. Elastic stability of plate simply supported on four sides subjected to combined bending shear and patch loading [J]. Thin-Walled Structures, 2016, 107: 377 − 396. doi: 10.1016/j.tws.2016.06.021
  • 加载中
图(29) / 表(4)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  301
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-06-06
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回