留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进PF算法的锈蚀RC结构抗弯承载力预测方法

戴理朝 梁紫璋 胡卓 王磊

戴理朝, 梁紫璋, 胡卓, 王磊. 基于改进PF算法的锈蚀RC结构抗弯承载力预测方法[J]. 工程力学, 2023, 40(9): 108-116, 189. doi: 10.6052/j.issn.1000-4750.2022.01.0038
引用本文: 戴理朝, 梁紫璋, 胡卓, 王磊. 基于改进PF算法的锈蚀RC结构抗弯承载力预测方法[J]. 工程力学, 2023, 40(9): 108-116, 189. doi: 10.6052/j.issn.1000-4750.2022.01.0038
DAI Li-zhao, LIANG Zi-zhang, HU Zhuo, WANG Lei. FLEXURAL CAPACITY PREDICTION OF CORRODED RC STRUCTURES BASED ON IMPROVED PARTICLE FILTER ALGORITHM[J]. Engineering Mechanics, 2023, 40(9): 108-116, 189. doi: 10.6052/j.issn.1000-4750.2022.01.0038
Citation: DAI Li-zhao, LIANG Zi-zhang, HU Zhuo, WANG Lei. FLEXURAL CAPACITY PREDICTION OF CORRODED RC STRUCTURES BASED ON IMPROVED PARTICLE FILTER ALGORITHM[J]. Engineering Mechanics, 2023, 40(9): 108-116, 189. doi: 10.6052/j.issn.1000-4750.2022.01.0038

基于改进PF算法的锈蚀RC结构抗弯承载力预测方法

doi: 10.6052/j.issn.1000-4750.2022.01.0038
基金项目: 国家自然科学基金项目(52008035);湖南省重点领域研发计划项目(2019SK2171);湖南省自然科学基金项目(2020RC4024,2020JJ1006,2021JJ40574);湖南省交通科技项目(201619)
详细信息
    作者简介:

    戴理朝(1989−),男,湖南人,副教授,博士,主要从事桥梁耐久性与可靠度研究(E-mail: lizhaod@csust.edu.cn)

    梁紫璋(1997−),男,湖北人,硕士生,主要从事桥梁耐久性研究(E-mail: 287398174@qq.com)

    胡 卓(1994−),男,湖南人,博士生,主要从事桥梁耐久性与可靠度研究(E-mail: zhuohuhz@outlook.com)

    通讯作者:

    王 磊(1979−),男,吉林人,教授,博士,主要从事桥梁耐久性与可靠度研究(E-mail: leiwang@csust.edu.cn)

  • 中图分类号: TU375

FLEXURAL CAPACITY PREDICTION OF CORRODED RC STRUCTURES BASED ON IMPROVED PARTICLE FILTER ALGORITHM

  • 摘要: 为提高锈蚀钢筋混凝土(RC)结构抗弯承载力评估精度,该文综合考虑锈蚀RC结构几何尺寸、钢筋截面积及力学性能、混凝土强度、粘结性能等因素,提出了基于改进粒子滤波(PF)算法的抗弯承载力模型参数更新及预测方法。通过生成大量的粒子以表征承载力退化过程中模型参数的不确定性,从选择不同建议密度函数的角度改进PF算法以解决传统PF算法中粒子退化的问题,分别采用PF、扩展粒子滤波(EPF)、无迹粒子滤波(UPF)算法对模型参数进行估计与更新,实现了锈蚀RC结构抗弯承载力的有效预测。结果表明:随着钢筋锈蚀率的增加,RC结构的抗弯承载力逐渐降低。基于改进PF算法的锈蚀RC结构抗弯承载力预测方法因考虑了模型参数更新使得预测结果更接近试验数据。基于EKF和UKF的改进PF算法可有效抑制粒子退化,其预测精度较PF算法更高;锈蚀RC结构抗弯承载力预测精度随着训练数据及粒子数的增加而提高。
  • 图  1  协同工作系数的拟合曲线

    Figure  1.  Fitted curves of co-working coefficients

    图  2  基于改进粒子滤波的抗弯承载力计算流程

    Figure  2.  Calculation flow of flexural capacity based on improved particle filter

    图  3  抗弯承载力模型各参数更新过程

    Figure  3.  Updating process of parameters in flexural capacity model

    图  4  以10%锈蚀率为预测起点的抗弯承载力预测结果

    Figure  4.  Prediction results of flexural capacity with the corrosion loss of 10% as the starting point of prediction

    图  5  不同预测起点下锈蚀RC结构抗弯承载力预测结果

    Figure  5.  Prediction results of flexural capacity of corroded RC structures under different prediction starting points

    图  6  RMSE随粒子数目变化图

    Figure  6.  Variation of RMSE with particle number

    图  7  RMSE随仿真次数变化对比图

    Figure  7.  RMSE variation with simulation times

    表  1  不同模型的拟合效果比较

    Table  1.   Comparison of fitting effects with different models

    模型 一次函数拟合 二次函数拟合 单指数拟合 双指数拟合
    RMSE 0.03223 0.02969 0.03361 0.02902
    R2 0.81280 0.84240 0.79580 0.84690
    下载: 导出CSV

    表  2  状态模型参数初值

    Table  2.   Initial values of state model parameters

    置信区间 参数a 参数b 参数c
    中值 −1.468×10−4 −3.931×10−3 0.988
    下限值 −1.961×10−4 −5.465×10−3 0.972
    上限值 −0.970×10−4 −2.398×10−3 0.997
    下载: 导出CSV

    表  3  锈蚀RC结构抗弯承载力预测结果

    Table  3.   Prediction results of flexural capacity of corroded RC structures

    预测起始点/(%) PF算法 EPF算法 UPF算法
    预测值 误差/(%) PDF分布区间 预测值 误差/(%) PDF分布区间 预测值 误差/(%) PDF分布区间
    5 27.39 9.56 [23.17, 31.04] 26.83 7.32 [23.34, 29.96] 26.06 4.24 [23.08, 27.97]
    10 26.95 7.80 [23.72, 30.48] 26.34 5.36 [23.93, 29.37] 25.52 2.08 [23.64, 27.28]
    15 26.57 6.28 [24.68, 29.53] 25.86 3.44 [25.02, 28.31] 25.23 0.92 [24.21, 26.72]
    下载: 导出CSV
  • [1] 邢国华, 武名阳, 常召群, 等. 锈蚀预应力混凝土梁承载力及破坏模式研究[J]. 工程力学, 2020, 37(7): 177 − 188. doi: 10.6052/j.issn.1000-4750.2019.08.0503

    XING Guohua, WU Mingyang, CHANG Zhaoqun, et al. Load bearing capacity and failure mode of corroded prestressed concrete beams [J]. Engineering Mechanics, 2020, 37(7): 177 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0503
    [2] 林红威, 赵羽习, 郭彩霞, 等. 锈胀开裂钢筋混凝土粘结疲劳性能试验研究[J]. 工程力学, 2020, 37(1): 98 − 107. doi: 10.6052/j.issn.1000-4750.2019.01.0038

    LIN Hongwei, ZHAO Yuxi, GUO Caixia, et al. Fatigue of the bond behavior of corroded reinforced concrete with corrosion-induced cracks [J]. Engineering Mechanics, 2020, 37(1): 98 − 107. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0038
    [3] CHEN H P. Residual flexural capacity and performance assessment of corroded reinforced concrete beams [J]. Journal of Structural Engineering, 2018, 144(12): 04018213. doi: 10.1061/(ASCE)ST.1943-541X.0002144
    [4] ZHANG X, WANG L, ZHANG J, et al. Model for flexural strength calculation of corroded RC beams considering bond-slip behavior [J]. Journal of Engineering Mechanics, 2016, 142(7): 04016038. doi: 10.1061/(ASCE)EM.1943-7889.0001079
    [5] MEET S, TRISHNA C, NAVEEN K. Investigating the nonlinear performance of corroded reinforced concrete beams [J]. Journal of Building Engineering, 2021, 44: 102640. doi: 10.1016/j.jobe.2021.102640
    [6] 冯德成, 吴刚. 混凝土结构基本性能的可解释机器学习建模方法[J]. 建筑结构学报, 2022, 43(4): 228 − 238.

    FENG Decheng, WU Gang. Interpretable machine learning-based modeling approach for fundamental properties of concrete structures [J]. Journal of Building Structures, 2022, 43(4): 228 − 238. (in Chinese)
    [7] FU B, CHEN S Z, LIU X R, et al. A probabilistic bond strength model for corroded reinforced concrete based on weighted averaging of non-fine-tuned machine learning models [J]. Construction and Building Materials, 2022, 318: 125767. doi: 10.1016/j.conbuildmat.2021.125767
    [8] BEN SEGHIER M E A, OUAER H, GHRIGA M A, et al. Hybrid soft computational approaches for modeling the maximum ultimate bond strength between the corroded steel reinforcement and surrounding concrete [J]. Neural Computing and Applications, 2021, 33(12): 6905 − 6920. doi: 10.1007/s00521-020-05466-6
    [9] CHENG Z G, LIAO W J, CHEN X Y, et al. A vibration recognition method based on deep learning and signal processing [J]. Engineering Mechanics, 2021, 38(4): 230 − 246. doi: 10.6052/j.issn.1000-4750.2020.09.0644
    [10] 廖文杰, 黄羽立, 郑哲, 等. 基于生成对抗网络融合文本图像数据的剪力墙结构生成式设计方法[C]. 广州: 第30届全国结构工程学术会议, 2021: 381 − 387.

    LIAO Wenjie, HUANG Yuli, ZHENG Zhe, et al. Building structural generative design using generative adversarial networks-based fused-image-text to image translation method [C]. Guanghzou: The 30th National Conference on Structural Engineering, 2021: 381 − 387. (in Chinese)
    [11] 何定桥, 王鹏军, 杨军. 深度神经网络在EMD虚假分量识别中的应用[J]. 工程力学, 2021, 38(增刊): 195 − 201. doi: 10.6052/j.issn.1000-4750.2020.04.S036

    HE Dingqiao, WANG Pengjun, YANG Jun. Application of deep neural networks in emd false component identification [J]. Engineering Mechanics, 2021, 38(Suppl): 195 − 201. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.S036
    [12] YANG W, GAO P, PENG H, et al. Application of particle filter to concrete freeze-thaw prognosis [C]. Chengdu: Proceedings of the ACM Turing Celebration Conference-China, 2019: 1 − 7.
    [13] CHEN J, YUAN S, WANG H. On-line updating Gaussian process measurement model for crack prognosis using the particle filter [J]. Mechanical Systems and Signal Processing, 2020, 140: 106646. doi: 10.1016/j.ymssp.2020.106646
    [14] LI Q, MA B, LIU J. Remaining useful life prediction of rolling element bearings based on different degradation stages and particle filter [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(3): 432 − 441.
    [15] 马彦, 陈阳, 张帆, 等. 基于扩展H粒子滤波算法的动力电池寿命预测方法[J]. 机械工程学报, 2019, 55(20): 36 − 43.

    MA Yan, CHEN Yang, ZHANG Fan, et al. Remaining useful life prediction of power battery based on extend H particle filter algorithm [J]. Journal of Mechanical Engineering, 2019, 55(20): 36 − 43. (in Chinese)
    [16] AN H, WANG G, DONG Y, et al. Tool life prediction based on Gauss importance resampling particle filter [J]. International Journal of Advanced Manufacturing Technology, 2019, 103(9): 4627 − 4634. doi: 10.1007/s00170-019-03934-5
    [17] JOUIN M, GOURIVEAU R, HISSEL D, et al. Particle filter-based prognostics: Review, discussion and perspectives [J]. Mechanical Systems and Signal Processing, 2016, 72/73: 2 − 31. doi: 10.1016/j.ymssp.2015.11.008
    [18] 曹芙波, 尹润平, 王晨霞, 等. 锈蚀钢筋再生混凝土梁粘结性能及承载力研究[J]. 土木工程学报, 2016, 49(增刊 2): 14 − 19.

    CAO Fubo, YIN Runping, WANG Chenxia, et al. Research on bond performance and bend strength of corroded reinforced recycled concrete beams [J]. China Civil Engineering Journal, 2016, 49(Suppl 2): 14 − 19. (in Chinese)
    [19] MA Y, ZHANG J, WANG L, et al. Probabilistic prediction with bayesian updating for strength degradation of RC bridge beams [J]. Structural Safety, 2013, 44: 102 − 109. doi: 10.1016/j.strusafe.2013.07.006
    [20] 李亚辉, 郑山锁, 董立国, 等. 非均匀锈蚀钢筋拉伸性能试验与模拟方法研究[J]. 建筑材料学报, 2022, 25(9): 991 − 998.

    LI Yahui , ZHENG Shansuo , DONG Liguo, et al. Investigation on tensile properties test and simulation method of non-uniform corroded reinforcement [J]. Journal of Building Materials, 2022, 25(9): 991 − 998. (in Chinese)
    [21] NASSER H, VANDEWALLE L, VERSTRYNGE E. Effect of pre-existing longitudinal and transverse corrosion cracks on the flexural behaviour of corroded RC beams [J]. Construction and Building Materials, 2022, 319: 126141. doi: 10.1016/j.conbuildmat.2021.126141
    [22] 孙晓燕, 王海龙, 于凤荣. 锈损不锈钢钢筋混凝土梁受弯性能退化试验研究[J]. 建筑结构学报, 2021, 42(6): 160 − 168.

    SUN Xiaoyan, WANG Hailong, YU Fengrong. Experimental study on degradation of flexural performance of corroded stainless steel bars reinforced concrete beam [J]. Journal of Building Structures, 2021, 42(6): 160 − 168. (in Chinese)
    [23] GUO X, WANG H, XIE K, et al. Experimental and numerical study on the influence of corrosion rate and shear span ratio on reinforced concrete beam [J]. Advances in Materials Science and Engineering, 2020, 2020: 4718960.
    [24] 杨晓明, 吴天宇, 陈永林. 锈蚀钢筋混凝土梁受弯性能试验研究[J]. 自然灾害学报, 2018, 27(5): 70 − 78.

    YANG Xiaoming, WU Tianyu, CHEN Yonglin. Experimental study on the bending performance of corroded reinforced concrete beam [J]. Journal of Natural Disasters, 2018, 27(5): 70 − 78. (in Chinese)
    [25] ZHOU J, QIU J, ZHOU Y, et al. Experimental study on residual bending strength of corroded reinforced concrete beam based on micromagnetic sensor [J]. Sensors, 2018, 18(8): 18082635. doi: 10.3390/s18082635
    [26] LI H, LI B, JIN R, et al. Effects of sustained loading and corrosion on the performance of reinforced concrete beams [J]. Construction and Building Materials, 2018, 169: 179 − 187. doi: 10.1016/j.conbuildmat.2018.02.199
    [27] 郭诗惠, 刘炳. 锈蚀钢筋混凝土梁抗弯承载力计算与分析[J]. 建筑结构, 2017, 47(4): 44 − 48.

    GUO Shihui, LIU Bing. Calculation and analysis of flexural bearing capacity of corroded reinforced concrete beams [J]. Building Structure, 2017, 47(4): 44 − 48. (in Chinese)
    [28] AL-SAIDY A H, SAADATMANESH H, EL-GAMAL S, et al. Structural behavior of corroded RC beams with/without stirrups repaired with CFRP sheets [J]. Materials and Structures/Materiaux et Constructions, 2016, 49(9): 3733 − 3747.
    [29] 彭建新, 胡守旺, 宋波, 等. 锈蚀RC梁抗弯性能试验与数值分析[J]. 中国公路学报, 2015, 28(6): 34 − 41. doi: 10.3969/j.issn.1001-7372.2015.06.006

    PENG Jianxin, HU Shouwang, SONG Bo, et al. Experimental and numerical analysis of flexural performance for corroded RC beams [J]. China Journal of Highway and Transport, 2015, 28(6): 34 − 41. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.06.006
    [30] 邢国华, 牛荻涛. 锈蚀钢筋混凝土梁的受弯分析模型[J]. 中南大学学报(自然科学版), 2014, 45(1): 193 − 201.

    XING Guohua, NIU Ditao. Analytical model of flexural behavior of corroded reinforced concrete beams [J]. Journal of Central South University (Science and Technology), 2014, 45(1): 193 − 201. (in Chinese)
    [31] 卫军, 张萌, 董荣珍, 等. 钢筋锈蚀对混凝土梁破坏模式影响的试验研究[J]. 湖南大学学报(自然科学版), 2013, 40(10): 15 − 21.

    WEI Jun, ZHANG Meng, DONG Rongzhen, et al. Experimental research on the failuremode of concrete beam due to steel corrosion [J]. Journal of Hunan University (Natural Sciences), 2013, 40(10): 15 − 21. (in Chinese)
    [32] 吴庆, 汪俊华, 耿欧, 等. 硫酸盐和氯盐侵蚀的混凝土梁抗弯性能[J]. 中国矿业大学学报, 2012, 41(6): 923 − 929.

    WU Qing, WANG Junhua, GENG Ou, et al. The bending performance of concrete beams corroded by sulfate salt and chloride [J]. Journal of China University of Mining & Technology, 2012, 41(6): 923 − 929. (in Chinese)
    [33] XIA J, JIN W L, LI L Y. Effect of chloride-induced reinforcing steel corrosion on the flexural strength of reinforced concrete beams [J]. Magazine of Concrete Research, 2012, 64(6): 471 − 485. doi: 10.1680/macr.10.00169
    [34] 宋小雷, 曾志兴, 吴晓斌. 锈蚀钢筋钢纤维混凝土梁静力学性能试验[J]. 建筑结构, 2010, 40(11): 77 − 79.

    SONG Xiaolei, ZENG Zhixing, WU Xiaobin. Experimental research on static mechanical behavior of corroded reinforced concrete beams with steel fiber [J]. Building Structure, 2010, 40(11): 77 − 79. (in Chinese)
    [35] GU X L, ZHANG W P, SHANG D F, et al. Flexural behavior of corroded reinforced concrete beams [C]. Honolulu, Hawaii, United States: 12th International Conference on Engineering, Science, Construction, and Operations in Challenging Environments-Earth and Space 2010, 2010: 3545 − 3552.
    [36] MALUMBELA G, ALEXANDER M, MOYO P. Variation of steel loss and its effect on the ultimate flexural capacity of RC beams corroded and repaired under load [J]. Construction and Building Materials, 2010, 24(6): 1051 − 1059. doi: 10.1016/j.conbuildmat.2009.11.012
    [37] 金伟良, 夏晋, 蒋遨宇, 等. 锈蚀钢筋混凝土梁受弯承载力计算模型[J]. 土木工程学报, 2009, 42(11): 64 − 70. doi: 10.3321/j.issn:1000-131X.2009.11.009

    JIN Weiliang, XIA Jin, JIANG Aoyu, et al. Flexural capacity of corrosion-damaged RC beams [J]. China Civil Engineering Journal, 2009, 42(11): 64 − 70. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.11.009
    [38] 惠云玲, 李荣, 林志伸, 等. 混凝土基本构件钢筋锈蚀前后性能试验研究[J]. 工业建筑, 1997, 27(6): 15 − 19.

    HUI Yunling, LI Rong, LIN Zhishen, et al. Experimental studies on the property before and after corrosion of rebars in basic concrete members [J]. Industrial Construction, 1997, 27(6): 15 − 19. (in Chinese)
    [39] 卢朝辉, 李海, 赵衍刚, 等. 锈蚀钢筋混凝土梁抗剪承载力预测经验模型[J]. 工程力学, 2015, 32(增刊): 261 − 270. doi: 10.6052/j.issn.1000-4750.2014.05.S038

    LU Zhaohui, LI Hai, ZHAO Yangang, et al. An empirical model for shear strength prediction of corroded RC beams [J]. Engineering Mechanics, 2015, 32(Suppl): 261 − 270. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.S038
    [40] AN D, CHOI J H, KIM N H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab [J]. Reliability Engineering and System Safety, 2013, 115: 161 − 169. doi: 10.1016/j.ress.2013.02.019
    [41] DUAN B, ZHANG Q, GENG F, et al. Remaining useful life prediction of lithium-ion battery based on extended Kalman particle filter [J]. International Journal of Energy Research, 2020, 44(3): 1724 − 1734. doi: 10.1002/er.5002
    [42] LI L, WANG Z, JIANG H. Storage battery remaining useful life prognosis using improved unscented particle filter [J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2015, 229(1): 52 − 61. doi: 10.1177/1748006X14550662
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  45
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-04-22
  • 网络出版日期:  2022-05-20
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回