EXPERIMENTAL STUDY ON SEISMIC AND REPLACEABLE PERFORMANCE OF REPLACEABLE ENERGY DISSIPATION BEAMS WITH BOLTED END PLATES
-
摘要: 为研究端板-螺栓连接可更换耗能梁的抗震及可更换性能,设计制作了4个可更换耗能梁试件并进行了拟静力试验,研究不同长度系数对可更换耗能梁抗震性能和可更换能力的影响。结果表明:当长度系数较小时,试件发生剪切破坏,破坏特征包括腹板-加劲肋焊缝撕裂、腹板屈曲和腹板撕裂;当长度系数较大时,试件发生弯剪破坏,破坏特征包括梁端翼缘-端板焊缝撕裂和梁端翼缘屈曲;所有试件的滞回曲线非常饱满,具有优异的变形能力和耗能能力;可更换耗能梁的抗剪承载力强化明显,超强系数均值为1.9;采用端板-螺栓连接的可更换耗能梁均可实现震后可更换,当梁端残余转角为0.0020 rad~0.0046 rad时耗能梁可以实现震后更换,且更换快捷、操作简单;同时,根据耗能梁构件与带可更换构件的RCS混合框架结构体系的几何变形特征,可以将耗能梁的主要受力阶段划分为正常使用、非必要更换和必要更换3个阶段。Abstract: To study the seismic performance and replaceable capacity of energy dissipation beams with bolted end plates, four replaceable energy dissipation beam specimens were designed and fabricated. The effects of length ratio on seismic performance and replaceable capacity of the replaceable energy dissipation beams were investigated through quasi-static test. The results show that specimens with small length ratio present a shear dominated behavior including web-to-stiffener weld fracture, web buckling and web tear. Whereas the failure features of shear and flexure dominate the behavior of specimens with large length ratio, manifested as flange buckling and end plate-to-flange weld fracture. All tested specimens exhibit stable hysteresis behavior, excellent deformation ability and energy dissipation capacity. In addition, the bearing capacity of replaceable energy dissipation beams is strengthened significantly, and the average value of the overstrength factor is about 1.9. The replaceable energy dissipation beams with bolted end plates can be replaced after the earthquake. Moreover, the energy dissipation beams can be replaced conveniently after the earthquake when the residual angle at the beam end is 0.0020 rad-0.0046 rad. Meanwhile, the main stress development of replaceable beams can be divided into three stages of serviceability, non-essential and mandatory replaceability according to the deformation relationship between the replaceable link beams and the proposed frame structure system.
-
表 1 材料性能
Table 1. Material properties
钢材类型 部位 厚度t/mm 屈服强度fy/MPa 抗拉强度fu/MPa 强屈比fu/fy 屈服应变εy/με 弹性模量E/(×105MPa) 延伸率δ/(%) Q235 耗能梁腹板 10 291.7 441.7 1.51 1383 2.11 41.5 Q345 耗能梁翼缘和钢柱腹板 18 391.7 538.3 1.37 1967 1.99 42.5 Q345 钢柱翼缘 25 443.2 554.5 1.25 2161 2.07 42.7 表 2 试件参数
Table 2. Specimen parameters
试件
编号截面形式/
(mm×mm×mm×mm)耗能梁
长度e/mm长度系数
e/(Mp/Vp)加劲肋布置 试件
梁端构造间距d/mm 布置
形式RB1 I400×200×10×18 740 0.68 4@185 双侧 端板螺栓
连接RB2 940 0.86 5@188 RB3 1140 1.05 6@190 RB4 1740 1.60 8@218 表 3 试件抗剪承载力和超强系数
Table 3. Shear capacity and overstrength of specimens
试件
编号实测屈曲
剪力Vpn/kN极限抗剪
承载力Vu/kN超强
系数ΩRB1 573.3 1190.1 2.07 RB2 573.3 1133.4 1.98 RB3 573.3 1131.0 1.97 RB4 573.3 894.5 1.56 表 4 试件变形能力
Table 4. Deformation capacity of specimens
试件
编号屈服转角
γy/rad极限塑性
转角γp/rad累积塑性转角
Σγp/rad累积延性
系数Σγp/γyRB1 0.00225 0.0877 1.26 560 RB2 0.00292 0.0871 1.38 473 RB3 0.00234 0.0876 1.32 564 RB4 0.00467 0.0652 0.97 208 表 5 耗能梁的可更换性
Table 5. Replaceability of energy dissipation beams
试件编号 可更换时梁端
残余转角γre, L /rad连肢钢柱节点区的变形/rad 最大弹性转角 残余转角γre, C RB1 0.0046 0.000 32 − RB2 0.0034 0.000 38 − RB3 0.0033 0.000 22 − RB4 0.0020 0.000 30 − 表 6 耗能梁的变形能力
Table 6. Deformability of energy dissipation beams
RCS混合框架结构
层间位移角限值耗能梁的剪切变形/rad RB1 RB2 RB3 RB4 正常使用 1/400 0.0047 0.0043 0.0039 0.0034 耗能构件可更换 1/160 0.0118 0.0106 0.0099 0.0086 生命安全 1/60 0.0315 0.0284 0.0263 0.0230 -
[1] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese) [2] 吕西林, 武大洋, 周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40(2): 1 − 15. doi: 10.14006/j.jzjgxb.2019.02.001LYU Xilin, WU Dayang, ZHOU Ying. State-of-the-art of earthquake resilient structures [J]. Journal of Building Structures, 2019, 40(2): 1 − 15. (in Chinese) doi: 10.14006/j.jzjgxb.2019.02.001 [3] EATHERTON M R, MA X, KRAWINKLER H, et al. Quasi-static cyclic behavior of controlled rocking steel frames [J]. Journal of Structural Engineering, 2014, 140(11): 04014083. doi: 10.1061/(ASCE)ST.1943-541X.0001005 [4] CLAYTON P M, BERMAN J W, LOWES L N. Subassembly testing and modeling of self-centering steel plate shear walls [J]. Engineering Structures, 2013, 56: 1848 − 1857. doi: 10.1016/j.engstruct.2013.06.030 [5] 姜子钦, 杨晓峰, 张爱林, 等. 带可更换抗侧耗能装置的装配式钢框架结构静力性能研究[J]. 北京工业大学学报, 2021, 47(4): 365 − 373, 382. doi: 10.11936/bjutxb2020110040JIANG Ziqin, YANG Xiaofeng, ZHANG Ailin, et al. Study on static behavior of steel frame structure with lateral resistance energy-consuming device [J]. Journal of Beijing University of Technology, 2021, 47(4): 365 − 373, 382. (in Chinese) doi: 10.11936/bjutxb2020110040 [6] 张浩, 连鸣, 苏明周, 等. 带可更换低屈服点耗能梁段-端板连接的钢框筒结构抗震性能试验研究[J]. 土木工程学报, 2020, 53(7): 28 − 42.ZHANG Hao, LIAN Ming, SU Mingzhou, et al. Experimental study on seismic behavior of steel framed-tube structure with end-plate connected replaceable shear links made of low yield point steel [J]. China Civil Engineering Journal, 2020, 53(7): 28 − 42. (in Chinese) [7] ZHANG H, SU M Z, LIAN M, et al. Experimental and numerical study on the seismic behavior of high-strength steel framed-tube structures with end-plate-connected replaceable shear links [J]. Engineering Structures, 2020, 223: 111172. doi: 10.1016/j.engstruct.2020.111172 [8] LIAN M, GUAN B L, CHENG Q Q, et al. Experimental and numerical study of seismic performance of high-strength steel fabricated framed-tube structures with replaceable shear links [J]. Structures, 2020, 28: 2714 − 2732. doi: 10.1016/j.istruc.2020.10.081 [9] 纪晓东, 王彦栋, 马琦峰, 等. 可更换钢连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 1 − 10.JI Xiaodong, WANG Yandong, MA Qifeng, et al. Experimental study on seismic behavior of replaceable steel coupling beams [J]. Journal of Building Structures, 2015, 36(10): 1 − 10. (in Chinese) [10] JI X D, WANG T D, MA Q F, et al. Cyclic behavior of replaceable steel coupling beams [J]. Journal of Structural Engineering, 2017, 143(2): 04016169. doi: 10.1061/(ASCE)ST.1943-541X.0001661 [11] MANSOUR N, CHRISTOPOULOS C, TREMBLAY R. Experimental validation of replaceable shear links for eccentrically braced steel frames [J]. Journal of Structural Engineering, 2011, 137(10): 1141 − 1152. doi: 10.1061/(ASCE)ST.1943-541X.0000350 [12] SHEN Y L, CHRISTOPOULOS C, MANSOUR N, et al. Seismic design and performance of steel moment-resisting frames with nonlinear replaceable links [J]. Journal of Structural Engineering, 2011, 137(10): 1107 − 1117. doi: 10.1061/(ASCE)ST.1943-541X.0000359 [13] JI X D, LIU D, SUN Y, et al. Seismic performance assessment of a hybrid coupled wall system with replaceable steel coupling beams versus traditional RC coupling beams [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(4): 517 − 535. [14] YAO Z C, WANG W, FANG C, et al. An experimental study on eccentrically braced beam-through steel frames with replaceable shear links [J]. Engineering Structures, 2020, 206: 110185. doi: 10.1016/j.engstruct.2020.110185 [15] 谢鲁齐, 吴京, 章锦洋, 等. 可更换耗能连接力学机理及变形性能研究[J]. 工程力学, 2020, 37(6): 186 − 195. doi: 10.6052/j.issn.1000-4750.2019.08.0475XIE Luqi, WU Jing, ZHANG Jinyang, et al. Study on the mechanical and deformation properties of replaceable energy dissipation connectors [J]. Engineering Mechanics, 2020, 37(6): 186 − 195. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0475 [16] 孙东德, 杨勇, 马银科, 等. 采用单侧角钢的梁柱可更换连接件抗震性能试验研究[J]. 工程力学, 2022, 39(4): 151 − 163. doi: 10.6052/j.issn.1000-4750.2021.02.0122SUN Dongde, YANG Yong, MA Yinke, et al. Experimental study on seismic performance of replaceable beam-column connector with single-sided angle steel [J]. Engineering Mechanics, 2022, 39(4): 151 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0122 [17] 黄炜, 胡高兴. 可恢复预制装配式RC梁柱节点抗震性能研究[J]. 工程力学, 2022, 39(12): 165 − 176, 189. doi: 10.6052/j.issn.1000-4750.2021.07.0554HUANG Wei, HU Gaoxing. Seismic performance of earthquake-resilient precast rc beam-column joints [J]. Engineering Mechanics, 2022, 39(12): 165 − 176, 189. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0554 [18] 叶建峰, 郑莲琼, 颜桂云, 等. 装配式可更换耗能铰滞回性能试验研究[J]. 工程力学, 2021, 38(8): 42 − 54. doi: 10.6052/j.issn.1000-4750.2020.07.0531YE Jianfeng, ZHENG Lianqiong, YAN Guiyun, et al. Experimental study on hysteretic performance of replaceable energy-dissipating prefabricated hinges [J]. Engineering Mechanics, 2021, 38(8): 42 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0531 [19] 门进杰, 霍文武, 兰涛, 等. 基于刚度和位移带可更换构件RCS混合框架结构抗震设计方法[J]. 工程力学, 2021, 38(4): 169 − 178. doi: 10.6052/j.issn.1000-4750.2020.06.0370MEN Jinjie, HUO Wenwu, LAN Tao, et al. Seismic design method of RCS hybrid frame structure with replaceable members based on stiffness and displacement [J]. Engineering Mechanics, 2021, 38(4): 169 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0370 [20] 门进杰, 霍文武, 兰涛, 等. 带可更换构件的RCS混合框架结构受力特性及抗震设计方法[J]. 土木工程学报, 2020, 53(6): 42 − 52.MEN Jinjie, HUO Wenwu, LAN Tao, et al. Mechanical behavior and seismic design method of RCS hybrid frame structure with replaceable components [J]. China Civil Engineering Journal, 2020, 53(6): 42 − 52. (in Chinese) [21] ANSI/AISC 341-10, Seismic provisions for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2010. [22] ROSSI P P, LOMBARDO A. Influence of the link overstrength factor on the seismic behaviour of eccentrically braced frames [J]. Journal of Constructional Steel Research, 2007, 63(11): 1529 − 1545. doi: 10.1016/j.jcsr.2007.01.006 [23] AZAD K S, TOPKAYA C. A review of research on steel eccentrically braced frames [J]. Journal of Constructional Steel Research, 2017, 128: 53 − 73. doi: 10.1016/j.jcsr.2016.07.032 [24] MCDANIEL C C, UANG C M, SEIBLE F. Cyclic testing of built-up steel shear links for the new bay bridge [J]. Journal of Structural Engineering, 2003, 129(6): 801 − 809. doi: 10.1061/(ASCE)0733-9445(2003)129:6(801) [25] RICHARDS P, UANG C M. Development of testing protocol for short links in eccentrically braced frames [R]. San Diego: University of California at San Diego, 2003. [26] OKAZAKI T, ENGELHARDT M D. Cyclic loading behavior of EBF links constructed of ASTM A992 steel [J]. Journal of Constructional Steel Research, 2007, 63(6): 751 − 765. doi: 10.1016/j.jcsr.2006.08.004 [27] 王彦栋. 带RC楼板的可更换钢连梁抗震性能及设计方法研究[D]. 北京: 清华大学, 2016.WANG Yandong. Study on seismic behavior and design of replaceable steel coupling beams with RC slabs [D]. Beijing: Tsinghua University, 2016. (in Chinese) [28] GÁLVEZ P. Investigation of factors affecting web fractures in shear links [D]. Austin: The University of Texas at Austin, 2004. [29] 纪晓东, 马琦峰, 王彦栋, 等. 钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(6): 1 − 11. doi: 10.14006/j.jzjgxb.2014.06.002JI Xiaodong, MA Qifeng, WANG Yandong, et al. Cyclic tests of replaceable shear links in steel coupling beams [J]. Journal of Building Structures, 2014, 35(6): 1 − 11. (in Chinese) doi: 10.14006/j.jzjgxb.2014.06.002 [30] HJELMSTAD K D, POPOV E P. Seismic behavior of active beam links in eccentrically braced frames [R]. Berkeley: University of California, 1983. [31] ENGELHARDT M D, POPOV E P. Behavior of long links in eccentrically braced frames [R]. Berkeley: University of California, 1989. [32] RYU H C. Effects of loading history on the behavior of links in seismic resistant eccentrically braced frames [D]. Austin: University of Texas at Austin, 2005. [33] ARCE G, OKAZAKI T, ENGELHARDT M D. Experiments on the impact of higher strength steels on local buckling and overstrength of links in EBFs [R]. Austin: University of Texas at Austin, 2001. [34] OKAZAKI T, ENGELHARDT M D, HONG J K, et al. Improved link-to-column connections for steel eccentrically braced frames [J]. Journal of Structural Engineering, 2015, 141(8): 04014201. doi: 10.1061/(ASCE)ST.1943-541X.0001041 [35] OKAZAKI T, ENGELHARDT M D, NAKASHIMA M, et al. Experimental performance of link-to-column connections in eccentrically braced frames [J]. Journal of Structural Engineering, 2006, 132(8): 1201 − 1211. doi: 10.1061/(ASCE)0733-9445(2006)132:8(1201) [36] STEPHENS M, DUSICKA P. Continuously stiffened composite web shear links: Tests and numerical model validation [J]. Journal of Structural Engineering, 2014, 140(7): 04014040. doi: 10.1061/(ASCE)ST.1943-541X.0000996 [37] DUSICKA P, ITANI A M, BUCKLE I G. Cyclic behavior of shear links of various grades of plate steel [J]. Journal of Structural Engineering, 2010, 136(4): 370 − 378. doi: 10.1061/(ASCE)ST.1943-541X.0000131 [38] LIU X G, FAN J S, LIU Y F, et al. Experimental research of replaceable Q345GJ steel shear links considering cyclic buckling and plastic overstrength [J]. Journal of Constructional Steel Research, 2017, 134: 160 − 179. doi: 10.1016/j.jcsr.2017.03.018 [39] KASAI K, POPOV E P. A study of seismically resistant eccentrically braced steel frame systems [R]. Berkeley: University of California, 1986. [40] MALLEY J O, POPOV E P. Shear links in eccentrically braced frames [J]. Journal of Structural Engineering, 1984, 110(9): 2275 − 2295. doi: 10.1061/(ASCE)0733-9445(1984)110:9(2275) [41] RICLES J M, POPOV E P. Experiments on eccentrically braced frames with composite floors [R]. Berkeley: University of California, 1987. [42] HJELMSTAD K D, POPOV P E. Characteristics of eccentrically braced frames [J]. Journal of Structural Engineering, 1984, 110(2): 340 − 353. doi: 10.1061/(ASCE)0733-9445(1984)110:2(340) -