RESEARCH ON THE COMPRESSION BEHAVIOR OF SQUARE TUBED REINFORCED CONCRETE SLENDER COLUMN WITH ADDITIONAL GAP
-
摘要: 钢管约束混凝土柱的钢管通常在柱端设缝以使其不直接承受荷载。该文主要对两种设缝模式的方钢管约束型钢混凝土柱(仅柱两端设缝、柱两端和柱中均设缝)的受力性能进行分析对比。以钢管宽厚比、荷载偏心率为主要变化参数,对柱中设缝的方钢管约束型钢混凝土中长柱进行了受压力学性能试验。分析对比了各组试件的破坏模式、承载能力及钢管应力发展规律,结果表明:设缝模式对试件破坏形态无明显影响,柱中设缝试件的轴压承载力略有提高,而偏压承载力呈降低趋势。采用精细化的有限元模型进行了参数分析,依据试验及有限元结果,提出用于计算构件弯矩增大效应的刚度折减系数公式,进而建立柱中设缝构件偏压作用下的承载力计算方法。Abstract: For a tubed concrete column, the tube gaps are usually arranged at the column ends to avoid the steel tube carrying loads directly. Two type square tubed steel reinforced concrete (TSRC) columns, i.e., a column with two gaps at the column ends and another column with an additional gap at the mid-height, are discussed in this paper. Experimental studies on the compression behavior of TSRC slender columns were conducted to investigate the effects of the width-to-thickness ratio of steel tube and the load eccentricity ratio. The failure modes, the ultimate strengths, and the load to tube stress curves were analyzed. The results indicated that the two type columns shown similar failure modes. The axial strength of column with additional gap at the mid-height was slightly higher than that of column with two gaps, while the eccentric strength of column exhibited opposite tendency. Parametric analysis were carried out based on the precise finite element (FE) models. Based on the test and FE results, the stiffness reduction coefficient to calculate the moment amplification effect was proposed by regression analysis, and the design method of square TSRC column with additional gap at the mid-height under eccentric compression was proposed.
-
表 1 试件主要参数
Table 1. Main parameters of specimens
试件编号 L/mm B/mm t/mm e/mm L/B 2e/B fyt/MPa fys/MPa fcu/MPa fco/MPa Nue/kN 数据来源 S-1.5-0-A 1200 200 1.5 0 6 0.00 324.4 285.4 80.6 61.1 2982 文献[7] S-1.5-25-A 1200 200 1.5 25 6 0.25 324.4 285.4 80.6 61.1 2181 S-2-0-A 1200 200 2.0 0 6 0.00 290.1 285.4 80.6 61.1 3044 S-2-25-A 1200 200 2.0 25 6 0.25 290.1 285.4 80.6 61.1 2142 S-1.5-0-B 1200 200 1.5 0 6 0.00 324.4 285.4 80.6 61.1 3070 本文 S-1.5-25-B 1200 200 1.5 25 6 0.25 324.4 285.4 80.6 61.1 2091 S-2-0-B 1200 200 2.0 0 6 0.00 290.1 285.4 80.6 61.1 3269 S-2-25-B 1200 200 2.0 25 6 0.25 290.1 285.4 80.6 61.1 2065 注:L为构件长度;B为构件截面宽度;t为钢管厚度;e为荷载偏心距;L/B为构件长宽比;2e/B为荷载偏心率;fyt为钢管屈服强度;fys为型钢屈服强度;fcu、fco分别为混凝土立方体抗压强度、轴心抗压强度;Nue为试件实测峰值轴压力。 表 2 参数取值
Table 2. Values of studied parameters
参数 取值范围 固定值 L/B 4、5、6、8、10、12、15、18、20、25 − 2e/B 0.25、0.5、0.75、1.0 − B/t 80、100、120、150、200 120 fyt/MPa 300、400、500 300 fys/MPa 300、400、500 300 fco/MPa 40、50、60、70 50 注:L/B为构件长宽比;2e/B为荷载偏心率;B/t为钢管宽厚比;fyt为钢管屈服强度;fys为型钢屈服强度;fco为混凝土轴心抗压强度。 -
[1] 周绪红, 刘界鹏. 钢管约束混凝土柱的性能与设计[M]. 北京: 科学出版社, 2010.ZHOU Xuhong, LIU Jiepeng. Performance and design of tubed concrete column [M]. Beijing: Science Press, 2010. (in Chinese) [2] JGJ/T 471−2019, 钢管约束混凝土结构技术标准[S]. 北京: 中国建筑工业出版社, 2019.JGJ/T 471−2019, Technical standard for steel tube confined concrete structures [S]. Beijing: China Architecture and Building Press, 2019. (in Chinese) [3] JGJ 138−2016, 组合结构设计规范[S]. 北京: 中国建筑工业出版社, 2016.JGJ 138−2016, Code for design of composite structures [S]. Beijing: China Architecture and Building Press, 2016. (in Chinese) [4] 周天华, 余吉鹏, 张钰, 等. 单轴对称十字型钢混凝土中长柱偏压性能试验研究[J]. 工程力学, 2021, 38(4): 111 − 122. doi: 10.6052/j.issn.1000-4750.2020.05.0333ZHOU Tianhua, YU Jipeng, ZHANG Yu, et al. Experimental investigation on slender steel reinforced concrete columns with monosymmetric cross-shaped steel under eccentric loading [J]. Engineering Mechanics, 2021, 38(4): 111 − 122. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0333 [5] 张树琛, 杨勇, 薛亦聪, 等. 部分预制装配型钢混凝土短柱抗震性能试验研究[J]. 工程力学, 2020, 37(10): 179 − 191. doi: 10.6052/j.issn.1000-4750.2019.11.0702ZHANG Shuchen, YANG Yong, XUE Yicong, et al. Research on seismic performance of partially precast steel reinforced concrete short columns [J]. Engineering Mechanics, 2020, 37(10): 179 − 191. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0702 [6] GAUTHAM A, SAHOO D R. Performance of SRC column-RC beam joints under combined axial and cyclic lateral loadings [J]. Engineering Structures, 2022, 260: 114218. doi: 10.1016/j.engstruct.2022.114218 [7] ZHOU X H, YAN B, LIU J P. Behavior of square tubed steel reinforced-concrete (SRC) columns under eccentric compression [J]. Thin-Walled Structures, 2015, 91: 129 − 138. doi: 10.1016/j.tws.2015.01.022 [8] TOMII M, SAKINO K, XIAO Y, et al. Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube [C]// Proceeding of the international speciality conference on concrete filled steel tubular structures. Harbin, China: Harbin Institute of Technology, 1985: 119 − 125. [9] GAO Q, LI J H, QIU Z J, et al. Cyclic loading test for interior precast SRC beam-column joints with and without slab [J]. Engineering Structures, 2019, 182: 1 − 12. doi: 10.1016/j.engstruct.2018.12.069 [10] LAI B L, LIEW J Y R, VENKATESHWARAN A, et al. Assessment of high-strength concrete encased steel composite columns subject to axial compression [J]. Journal of Constructional Steel Research, 2020, 164: 105765. doi: 10.1016/j.jcsr.2019.105765 [11] 伍凯, 刘晓艺, 陈峰, 等. 不同荷载条件下型钢-钢纤维混凝土组合结构的界面失效机理研究[J]. 工程力学, 2021, 38(2): 110 − 121. doi: 10.6052/j.issn.1000-4750.2020.04.0206WU Kai, LIU Xiaoyi, CHEN Feng, et al. Study on interfacial failure mechanism of steel and steel fiber reinforced concrete composite structure under different loading conditions [J]. Engineering Mechanics, 2021, 38(2): 110 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0206 [12] ZHAO X Z, WEN F P, CHAN T M, et al. Theoretical stress–strain model for concrete in steel-reinforced concrete columns [J]. Journal of Structural Engineering, 2019, 145(4): 04019009. doi: 10.1061/(ASCE)ST.1943-541X.0002289 [13] QI H T, GUO L H, LIU J P, et al. Axial load behavior and strength of tubed steel reinforced-concrete (SRC) stub columns [J]. Thin-Walled Structures, 2011, 49(9): 1141 − 1150. doi: 10.1016/j.tws.2011.04.006 [14] ZHOU X H, LIU J P. Seismic behavior and strength of tubed steel reinforced concrete (SRC) short columns [J]. Journal of Constructional Steel Research, 2010, 66(7): 885 − 896. doi: 10.1016/j.jcsr.2010.01.020 [15] YAN B, GAN D, ZHOU X H, et al. Influence of slenderness on axially loaded square tubed steel-reinforced concrete columns [J]. Steel and Composite Structures, 2019, 33(3): 375 − 388. [16] 黎翔, 周绪红, 刘界鹏, 等. 圆钢管约束型钢混凝土柱-钢梁框架结构体系分析[J]. 建筑结构学报, 2021, 42(增刊 2): 31 − 40.LI Xiang, ZHOU Xuhong, LIU Jiepeng, et al. Analysis of circular tubed steel reinforced concrete column to steel beam frame structure system [J]. Journal of Building Structures, 2021, 42(Suppl 2): 31 − 40. (in Chinese) [17] 王卫永, 宋柯岩, 刘界鹏. 高温下钢管约束型钢混凝土柱的受力性能[J]. 土木建筑与环境工程, 2017, 39(3): 58 − 66.WANG Weiyong, SONG Keyan, LIU Jiepeng. Fire performance of circular tubed steel reinforced concrete columns [J]. Journal of Civil Environmental Engineering, 2017, 39(3): 58 − 66. (in Chinese) [18] 周绪红, 刘界鹏, 张素梅. 方钢管约束型钢混凝土短柱抗震性能试验研究[J]. 建筑结构学报, 2010, 31(7): 49 − 55.ZHOU Xuhong, LIU Jiepeng, ZHANG Sumei. Seismic behavior of square tubed steel reinforced concrete short columns [J]. Journal of Building Structures, 2010, 31(7): 49 − 55. (in Chinese) [19] YAN B, LIU J P, ZHOU X H. Axial load behavior and stability strength of circular tubed steel reinforced concrete (SRC) columns [J]. Steel and Composite Structures, 2017, 25(5): 545 − 556. [20] 韩林海. 钢管混凝土结构: 理论与实践[M]. 第三版. 北京: 科学出版社, 2016.HAN Linhai. Concrete filled steel tubular structures: theory and practice [M]. 3rd ed. Beijing: Science Press, 2016. (in Chinese) [21] TAO Z, UY B, HAN L H, et al. Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression [J]. Thin-Walled Structures, 2009, 47(12): 1544 − 1556. doi: 10.1016/j.tws.2009.05.006 [22] GB 50018−2002, 冷弯薄壁型钢结构技术规范[S]. 北京: 中国计划出版社, 2002.GB 50018−2002,Technical code of cold-formed thin-walled steel structures [S]. Beijing: China Planning Press, 2002. (in Chinese) [23] ENV 1994-1-1 (Eurocode4), Design of composite steel and concrete structures, Part 1.1: General rules and rules for buildings [S]. Brussels: European Committee for Standardization, 2007. [24] AISC 360-16, Specification for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2016. [25] 魏巍, 杜静, 白绍良. 细长偏心受压钢筋混凝土杆件的强度失效及稳定失效极限承载力分析[J]. 工程力学, 2006, 23(4): 114 − 119. doi: 10.3969/j.issn.1000-4750.2006.04.021WEI Wei, DU Jing, BAI Shaoliang. Ultimate load analysis of strength and stability failure for slender eccentrically compressed RC member [J]. Engineering Mechanics, 2006, 23(4): 114 − 119. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.04.021 [26] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese) [27] BONET J L, MIGUEL P F, FERNANDEZ M A, et al. Biaxial bending moment magnifier method [J]. Engineering Structures, 2004, 26(13): 2007 − 2019. doi: 10.1016/j.engstruct.2004.08.001 -