Processing math: 100%

倾转旋翼机悬停状态气动干扰分析

李尚斌, 江露生, 林永峰

李尚斌, 江露生, 林永峰. 倾转旋翼机悬停状态气动干扰分析[J]. 工程力学, 2024, 41(3): 232-240. DOI: 10.6052/j.issn.1000-4750.2022.04.0279
引用本文: 李尚斌, 江露生, 林永峰. 倾转旋翼机悬停状态气动干扰分析[J]. 工程力学, 2024, 41(3): 232-240. DOI: 10.6052/j.issn.1000-4750.2022.04.0279
LI Shang-bin, JIANG Lu-sheng, LIN Yong-feng. THE ANALYSIS OF AERODYNAMIC INTERFERENCE OF TILT ROTOR AIRCRAFT IN HOVER[J]. Engineering Mechanics, 2024, 41(3): 232-240. DOI: 10.6052/j.issn.1000-4750.2022.04.0279
Citation: LI Shang-bin, JIANG Lu-sheng, LIN Yong-feng. THE ANALYSIS OF AERODYNAMIC INTERFERENCE OF TILT ROTOR AIRCRAFT IN HOVER[J]. Engineering Mechanics, 2024, 41(3): 232-240. DOI: 10.6052/j.issn.1000-4750.2022.04.0279

倾转旋翼机悬停状态气动干扰分析

基金项目: 国家高新技术研究发展计划项目(2012AA112201);航空支撑项目(61901010402);航空基金项目(20175702001)
详细信息
    作者简介:

    江露生(1991−),男,福建人,工程师,硕士,主要从事旋翼空气动力学研究(E-mail: jiangls@avic.com)

    林永峰(1964−),男,江西人,研究员,学士,主要从事旋翼空气动力学研究(E-mail: 602lyf@sina.cn)

    通讯作者:

    李尚斌(1985−),男,江西人,高工,硕士,主要从事计算和实验流体力学研究(E-mail: lsbjjs@163.com)

  • 中图分类号: V211.52

THE ANALYSIS OF AERODYNAMIC INTERFERENCE OF TILT ROTOR AIRCRAFT IN HOVER

  • 摘要:

    针对倾转旋翼机,开展了悬停状态气动干扰风洞试验和数值模拟研究。试验中,测量了悬停状态下的旋翼升力、扭矩以及半模机翼的气动力。同时,采用运动嵌套网格方法,通过求解N-S方程对机翼倾角0°和90°两种状态进行数值模拟,开展了数值模拟与风洞试验的相关性分析研究,验证了该数值模拟方法的有效性。结果表明:不考虑机身气动力时,孤立旋翼、机翼攻角0°和机翼攻角90°三种状态下旋翼气动特性差异不明显;考虑机身气动力时,机翼攻角0°时,机身产生约18.2%向下载荷,单片桨叶和机身出现强烈非定常气动特性,其中桨叶升力系数动态值与平均值比为9.8%,机身升力系数动态值与平均值比为18.38%。

    Abstract:

    A wind tunnel test and numerical simulation of aerodynamic interference in hover are carried out for tiltrotor aircraft. In the test, the rotor lift, torque and aerodynamic force of half model wing are measured. At the same time, the moving overset grids method is used to numerically simulate the two states of Isorotor, wing angle of attack 0° and 90°, by solving the N-S equation. The correlation between numerical simulation and wind tunnel test is carried out to verify the effectiveness of the numerical simulation method. The results show that when the aerodynamic force of fuselage is not considered, the difference of rotor aerodynamic characteristics is not obvious under the three states; when the aerodynamic force of fuselage is considered, in the wing angle of attack 0° state, the fuselage generates about 18.2% downward load, the single blade and fuselage have strong unsteady aerodynamic characteristics, in which the ratio of dynamic value to average value of single blade lift coefficient is 9.8%, and the ratio of dynamic value to average value of fuselage lift coefficient is 18.38%.

  • 图  1   试验装置图

    Figure  1.   Testing equipment

    图  2   试验模型扭矩系数随拉力系数变化图

    Figure  2.   CQ changing with CT of test model

    图  3   试验模型机翼升力系数随拉力系数变化图

    Figure  3.   CL of wing changing with CT of test model

    图  4   扭矩系数随拉力系数变化图

    Figure  4.   CQ changing with CT

    图  5   悬停效率随拉力系数变化图

    Figure  5.   FM changing with CT

    图  6   机身升力系数随拉力系数变化图

    Figure  6.   CL of fuselage changing with CT

    图  7   单片桨叶拉力系数随方位角变化图

    Figure  7.   CTB of single blade changing with azimuth

    图  8   拉力系数随方位角变化图

    Figure  8.   CT changing with azimuth

    图  9   扭矩系数随方位角变化图

    Figure  9.   CQ changing with azimuth

    图  10   机身升力系数随方位角变化图

    Figure  10.   CL of fuselage changing with azimuth

    图  11   机翼0°攻角下y向速度云图

    Figure  11.   Vy cloud diagram at α=0°

    图  12   机翼90°攻角下y向速度云图

    Figure  12.   Vy cloud diagram at α=90°

    图  13   机翼0°攻角下机身表面压力云图

    Figure  13.   Pressure cloud diagram of fuselage surface at α=0°

    图  14   机翼90°攻角下机身表面压力云图

    Figure  14.   Pressure cloud diagram of fuselage surface at α=90°

    图  15   机翼0°攻角下涡量云图

    Figure  15.   Vorticity cloud diagram at α=0°

    图  16   机翼90°攻角下涡量云图

    Figure  16.   Vorticity cloud diagram at α=90°

    表  1   天平标定系数表

    Table  1   Balance calibration coefficient

    变量旋翼天平
    x方向力Fxy方向力Fyz方向力Fzx向力矩Mxy向力矩Myz向力矩Mz
    Fx04.099×10-22.246×10−19.297×10−3−5.394×10−2−2.148
    Fy8.296×10−303.785×10−21.971×10−3−1.451×10−38.502×10−3
    Fz−3.530×10−39.169×10−20−2.167−2.481×10−21.167×10−2
    Mx1.657×10−27.826×10−21.079×10−101.255×10−23.766×10−2
    My−1.628×10−1−8.071×10−2−1.3737.355×10−50−6.806×10−2
    Mz−4.286×10−2−7.983×10−21.010×10−13.089×10−2−6.227×10−20
    ΔUx9.64500000
    ΔUy09.8470000
    ΔUz009.909000
    ΔUMx0001.57100
    ΔUMy00001.0270
    ΔUMz000001.577
    变量机翼天平
    x向力Fxy向力Fyz向力Fzx向力矩Mxy向力矩Myz向力矩Mz
    Fx0−7.919×10−32.472×10−30−4.684×10−26.551
    Fy001.964×10−4−1.841×10−100
    Fz−5.022×10−2−7.742×10−201.419×1016.984×10−20
    Mx0−3.017×10−21.521×10−100−8.800×10−2
    My009.521×10−200−4.837×10−2
    Mz3.004×10−2−4.564×10−32.520×10−3000
    ΔUx1.101×10100000
    ΔUy01.509×1010000
    ΔUz001.499×101000
    ΔUMx0001.88700
    ΔUMy00002.2700
    ΔUMz000003.390
    下载: 导出CSV

    表  2   重复性试验

    Table  2   Repeatability test results

    试验次数拉力系数CT扭矩系数CQ升力系数CL
    10.029 1340.003 7020.002 672 6
    20.029 3560.003 6760.002 671 8
    30.029 1510.003 6770.002 654 0
    40.029 2970.003 6980.002 668 9
    50.029 1220.003 6790.002 652 9
    60.029 3730.003 6940.002 673 2
    70.029 1740.003 6730.002 654 8
    最大相对误差/(%)0.4910.4460.418
    下载: 导出CSV

    表  3   拉力系数与机身升力系数对比

    Table  3   Comparison between CT and CL of fuselage

    总距φ7/(°)机翼攻角0°
    拉力系数CT机身升力系数CLCL/CT/(%)
    120.026 5890.004 87218.32
    140.031 3910.005 59817.83
    160.035 6100.006 45118.12
    180.038 8650.007 19918.52
    平均值18.20
    总距φ7/(°)机翼攻角90°
    拉力系数CT机身升力系数CLCL/CT/(%)
    120.026 6980.000 0800.30
    140.031 5870.000 1330.42
    160.035 7490.000 1570.44
    180.038 9590.000 1770.45
    平均值0.40
    下载: 导出CSV

    表  4   平均值与动态值对比

    Table  4   comparison between average value and dynamic value

    变量机翼攻角0°
    单片桨叶拉力
    系数CTB
    拉力系数
    CT
    扭矩系数
    CQ
    机身升力
    系数CL
    平均值0.008 823 20.026 531 70.002 679 50.004 861 7
    动态值0.000 864 70.000 594 30.000 045 70.000 893 7
    动态值与
    平均值比值/(%)
    9.802.241.7118.38
    变量机翼攻角90°
    单片桨叶拉力
    系数CTB
    拉力系数
    CT
    扭矩系数
    CQ
    机身升力
    系数CL
    平均值0.008 909 80.026 795 40.002 686 20.000 098 9
    动态值0.000 5160.000 185 90.000 020 50.000 325 8
    动态值与
    平均值比值/(%)
    5.790.690.76329.49
    下载: 导出CSV
  • [1]

    TUNG C, BRANUM L. Model tilt rotor hover performance and surface pressure measurement [C]. Washington: American Helicopter Annual Forum, 1990: 785 − 796.

    [2]

    JOHNSON W. Calculation of the aerodynamic behavior of the tilt rotor aeroacoustic model (TRAM) in the DNW [C]. Washington: American Helicopter Annual Forum, 2001: 1344 − 1380.

    [3]

    FEJTEK I, ROBERTS L. Navier-stokes computation of wing/rotor interaction for a tilt rotor in hover [J]. AIAA Journal, 1992, 30(11): 2595 − 2603. doi: 10.2514/3.11272

    [4]

    MEAKIN R L. Unsteady simulation of the viscous flow about a V-22 rotor and wing in hover [C]. Baltimore: Atmospheric Flight Mechanics Conference, 1995: 332 − 344.

    [5]

    DROANDI G, ZANOTTI A, GIBERTINI G. Experimental investigation on a 1/4 scaled model of an high- performance tiltwing aircraft in hover [C]. Montreal: AHS Annual Forum, 2014: 1 − 15.

    [6]

    POSTSDAM M A, STRAWN R C. CFD simulations of tiltrotor configurations in hover [J]. Journal of American Helicopter Society, 2005, 50(1): 82 − 94. doi: 10.4050/1.3092845

    [7]

    DROANDI G, GIBERTINI G, GRASSI D, et al. Proprotor-wing aerodynamic interaction in the first stages of conversion from helicopter to aeroplane mode [J]. Aerospace Science and Technology, 2016, 58: 116 − 133. doi: 10.1016/j.ast.2016.08.013

    [8]

    TAKII A, YAMAKAWA M, ASAO S, et al. Turning flight simulation of tilt-rotor plane with fluid-rigid body interaction [J]. Journal of Thermal Science and Technology, 2020, 15(2): JTST0021. doi: 10.1299/jtst.2020jtst0021

    [9]

    ZANOTTI A, SAVINO A, PALAZZI M, et al. Assessment of a mid-fidelity numerical approach for investigation of tiltrotor aerodynamics [J]. Applied Sciences, 2021, 11(8): 3385. doi: 10.3390/app11083385

    [10]

    YOUNG L A. Tilt rotor aeroacoustic model (TRAM) a new rotorcraft research facility [C]. Gifu: AHS International Meeting on Advanced Rotorcraft Technology and Disaster Relief, 1998: 4401 − 4411.

    [11]

    MCCLUER M S, JOHNSON J L. Full-span tiltrotor aeroacoustic model (FS TRAM) overview and initial testing [C]. San Francisco: American Helicopter Society Aerodynamics, Acoustics and Test and Evaluation Technical Specialists’ Meeting, 2002: 1 − 17.

    [12] 高永卫. 螺旋桨噪声特性风洞实验和数值模拟技术研究[D]. 西安: 西北工业大学, 2004.

    GAO Yongwei. Research on wind tunnel test and numerical simulation of propeller noise characteristics [D]. Xi’an: Northwest University of Technology, 2004. (in Chinese)

    [13] 李尚斌, 焦予秦. 基于翼尖支撑和螺旋桨独立支撑的螺旋桨滑流影响实验研究[J]. 工程力学, 2013, 30(7): 288 − 293. doi: 10.6052/j.issn.1000-4750.2012.04.0243

    LI Shangbin, JIAO Yuqin. The test investigation of the effect of propeller slipstream based on Wing-Tip support and indepent propeller support [J]. Engineering Mechanics, 2013, 30(7): 288 − 293. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0243

    [14] 王适存, 徐国华. 直升机旋翼空气动力学的发展[J]. 南京航空航天大学学报, 2001, 33(3): 203 − 211. doi: 10.3969/j.issn.1005-2615.2001.03.001

    WANG Shicun, XU Guohua. Progress of helicopter rotor aerodynamics [J]. Journal of Nanjing University of Aeronautics &Astronautics, 2001, 33(3): 203 − 211. (in Chinese) doi: 10.3969/j.issn.1005-2615.2001.03.001

    [15] 李正农, 冯豪, 浦鸥, 等. 基于六旋翼无人机搭载风速仪的边界层风剖面实测研究[J]. 工程力学, 2021, 38(8): 121 − 132. doi: 10.6052/j.issn.1000-4750.2020.08.0553

    LI Zhengnong, FENG Hao, PU Ou, et al. Boundry layer wind profile measurement based on a six-rotor UAV anemometer [J]. Engineering Mechanics, 2021, 38(8): 121 − 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0553

    [16] 安朝, 谢长川, 孟杨, 等. 多体组合式无人机飞行力学稳定性分析及增稳控制研究[J]. 工程力学, 2021, 38(11): 248 − 256. doi: 10.6052/j.issn.1000-4750.2020.11.0820

    AN Chao, XIE Changchuan, MENG Yang, et al. Flight dynamics and stable control analyses of multi-body aircraft [J]. Engineering Mechanics, 2021, 38(11): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0820

    [17] 李春华, 徐国华. 悬停和前飞状态倾转旋翼机的旋翼自由尾迹计算方法[J]. 空气动力学学报, 2005, 23(2): 152 − 156. doi: 10.3969/j.issn.0258-1825.2005.02.004

    LI Chunhua, XU Guohua. The rotor free-wake analytical method for tiltrotor aircraft in hover and forward flight [J]. Acta Aerodynamica Sinica, 2005, 23(2): 152 − 156. (in Chinese) doi: 10.3969/j.issn.0258-1825.2005.02.004

    [18] 李鹏, 招启军. 悬停状态倾转旋翼/机翼干扰流场及气动力的CFD计算[J]. 航空学报, 2014, 35(2): 362 − 370.

    LI Peng, ZHAO Qijun. CFD calculations on the interaction flowfield and aerodynamic force of tiltrotor/wing in hover [J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(2): 362 − 370. (in Chinese)

    [19] 王娜, 叶靓, 戚姝妮. 基于DES方法的倾转旋翼悬停计算研究[J]. 空气动力学报, 2018, 36(1): 57 − 63.

    WANG Na, YE Liang, QI Shuni. Numerical study for tilt rotor in hover with detached eddy simulation [J]. Acta Aerodynamica Sinica, 2018, 36(1): 57 − 63. (in Chinese)

    [20] 刘佳豪, 李高华, 王福新. 倾转过渡状态旋翼-机翼气动干扰特性计算分析[J]. 航空学报, 2022, 43(7): 126097.

    LIU Jiahao, LI Gaohua, WANG Fuxin. Calculation analysis of rotor-wing aerodynamic interference characteristics in conversion mode [J]. Acta Aeronautica ET Astronautica Sinica, 2022, 43(7): 126097. (in Chinese)

    [21] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249 − 255. doi: 10.6052/j.issn.1000-4750.2017.07.0561

    LI Shangbin, LIN Yongfeng, FAN Feng. The research of aerodynamic characteristics of tilt rotor using wind tunnel test and numerical simulation methods [J]. Engineering Mechanics, 2018, 35(6): 249 − 255. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0561

    [22] 袁明川, 李尚斌, 江露生, 等. 悬停状态倾转旋翼噪声试验及数值计算[J]. 航空动力学报, 2021, 36(3): 520 − 529.

    YUAN Mingchuan, LI Shangbin, JIANG Lusheng, et al. Acoustic test and numerical analysis of tilt rotor in hover [J]. Journal of Aerospace Power, 2021, 36(3): 520 − 529. (in Chinese)

    [23] 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006: 15 − 17.

    YAN Chao. Method and application of computational fluid dynamics [M]. Beijing: Beihang University Press, 2006: 15 − 17. (in Chinese)

图(16)  /  表(4)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  91
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-07-11
  • 网络出版日期:  2022-07-18
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回