留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EEMD的远场类谐和地震动人工合成方法

刘如月 赖秋兰 颜桂云 郑居焕 袁宇琴

刘如月, 赖秋兰, 颜桂云, 郑居焕, 袁宇琴. 基于EEMD的远场类谐和地震动人工合成方法[J]. 工程力学, 2023, 40(9): 172-189. doi: 10.6052/j.issn.1000-4750.2022.04.0291
引用本文: 刘如月, 赖秋兰, 颜桂云, 郑居焕, 袁宇琴. 基于EEMD的远场类谐和地震动人工合成方法[J]. 工程力学, 2023, 40(9): 172-189. doi: 10.6052/j.issn.1000-4750.2022.04.0291
LIU Ru-yue, LAI Qiu-lan, YAN Gui-yun, ZHENG Ju-huan, YUAN Yu-qin. SYNTHETIC METHOD OF FAR-FILED HARMONIC-LIKE GROUND MOTION BASED ON EEMD[J]. Engineering Mechanics, 2023, 40(9): 172-189. doi: 10.6052/j.issn.1000-4750.2022.04.0291
Citation: LIU Ru-yue, LAI Qiu-lan, YAN Gui-yun, ZHENG Ju-huan, YUAN Yu-qin. SYNTHETIC METHOD OF FAR-FILED HARMONIC-LIKE GROUND MOTION BASED ON EEMD[J]. Engineering Mechanics, 2023, 40(9): 172-189. doi: 10.6052/j.issn.1000-4750.2022.04.0291

基于EEMD的远场类谐和地震动人工合成方法

doi: 10.6052/j.issn.1000-4750.2022.04.0291
基金项目: 国家自然科学基金面上项目(51878174);福建省自然科学基金项目(2020J05185);福建省财政厅科技项目(GY-Z21005)
详细信息
    作者简介:

    刘如月(1991−),女,福建人,讲师,博士,主要从事装配式结构及工程结构抗震设计研究(E-mail: ruyueliu@fjut.edu.cn)

    赖秋兰(1997−),女,广西人,硕士生,主要从事装配式钢结构及研究(E-mail: laiqiulan0219@qq.com)

    郑居焕(1973−),男,福建人,副教授,硕士,主要从事新型材料与结构、结构抗震研究(E-mail: 19730701@fjut.edu.cn)

    袁宇琴(1997−),女,湖南人,硕士,主要从事结构抗震与减震隔震研究(E-mail: 2759578882@qq.com)

    通讯作者:

    颜桂云(1974−),男,湖南人,教授,博士,主要从事结构抗震与减震隔震、装配式混凝土结构研究(E-mail: yanguiyun@sina.com)

  • 中图分类号: P315.9

SYNTHETIC METHOD OF FAR-FILED HARMONIC-LIKE GROUND MOTION BASED ON EEMD

  • 摘要: 远场类谐和地震动是一种特殊的长周期地震动,振动阶段后期产生多个循环的长周期类谐和加速度脉冲,易对长周期结构带来不利影响。然而,由于远场类谐和地震动实测记录有限,能直接用于结构抗震分析的地震动记录更少。为弥补这一缺陷,该文提出一种基于EEMD的远场类谐和地震动人工合成方法并对该方法的合理性和可行性进行验证。该方法通过对远场类谐和地震动记录进行EEMD分解,得到地震动低频成分的类谐和主脉冲成分与衰减部分,并对二者的拟合重构形成类谐和主脉冲分量进行特征参数识别和简化,提出由类谐和脉冲函数和衰减函数相结合的主脉冲速度模型,最后叠加分解时剔除的高频IMF分量形成人工类谐和地震动。基于此,重新选取3条任意远场类谐和地震动记录的地震动特征参数合成人工地震动,与原始地震动反应谱进行对比分析。结果表明:采用EEMD方法可有效提取原始地震动的低频成分,基于所提类谐和主脉冲速度模型得到的主脉冲时程与原始地震动速度主脉冲时程吻合较好;利用所提的地震动合成方法合成的人工地震动可较好保留原始类谐和地震动的非平稳特性,且与原始地震动较为吻合。
  • 图  1  地震动反应谱特性

    Figure  1.  Characteristic of response spectrum for the selected ground motions

    图  2  ILA055-W速度时程IMF分量

    Figure  2.  IMF components for velocity-time history of ILA055-W

    图  3  ILA055-W原始地震动、高频和低频时程对比

    Figure  3.  Comparison of original, high-frequency, low-frequency time history for ILA055-W

    图  4  ILA055-W原始地震动、高频和低频反应谱对比

    Figure  4.  Comparison of original, high-frequency, low-frequency response spectrum for ILA055-W

    图  5  ILA055-W低频成分、类谐和次脉冲分量和类谐和主脉冲分量反应谱对比

    Figure  5.  Comparison of low-frequency, harmonic sub-pulse, harmonic main-pulse component for ILA055-W

    图  6  ILA005-N低频成分、类谐和次脉冲分量和类谐和主脉冲分量反应谱对比

    Figure  6.  Comparison of low-frequency, harmonic sub-pulse, harmonic main-pulse component for ILA055-N

    图  7  ILA055-W类谐和主脉冲分量脉冲特征参数识别

    Figure  7.  Identification of characteristics parameter of harmonic main-pulse component for ILA055-W

    图  8  类谐和主脉冲速度时程简化分量与原始主脉冲速度时程的对比

    Figure  8.  Comparison of simplified and original velocity-time history

    图  9  原始地震动时程与合成地震动时程对比

    Figure  9.  Comparison of time history characteristics between original and synthesized ground motions

    图  10  原始地震动反应谱和合成地震动的反应谱特性对比

    Figure  10.  Comparison of spectrum characteristics between original and synthesized ground motions

    图  11  原始地震动时程与合成地震动时程对比

    Figure  11.  Comparison of time history characteristics between original and synthesized ground motions

    图  12  原始地震动反应谱和合成地震动的反应谱特性对比

    Figure  12.  Comparison of spectrum characteristics between original and synthesized ground motions

    图  13  不同γ取值下ILA055-W的类谐和主脉冲分量加速度时程

    Figure  13.  Acceleration-time history for the main-pulse component of ILA055-W for different γ

    图  14  γ对ILA055-W的地震动反应谱的影响规律

    Figure  14.  Influence of γ on the response spectrum of ILA055-W

    图  15  变脉冲周期个数的ILA055-W地震动加速度时程

    Figure  15.  Acceleration-time history of ILA055-W with different pulse cycles

    图  16  变脉冲周期个数对ILA055-W地震动反应谱的影响规律

    Figure  16.  Influence of pulse cycles on the response spectrum of ILA055-W

    图  17  变脉冲持时的ILA055-W地震动加速度时程

    Figure  17.  Acceleration-time history of ILA055-W with different pulse duration

    图  18  变脉冲持时对ILA055-W地震动反应谱的影响规律

    Figure  18.  Influence of pulse duration on the response spectrum of ILA055-W

    图  19  变衰减幅值的ILA004-N地震动加速度时程

    Figure  19.  Acceleration-time history of ILA004-N with different attenuation amplitudes

    图  20  变衰减幅值对ILA004-N的地震动反应谱的影响规律

    Figure  20.  Influence of attenuation amplitudes on the response spectrum of ILA004-N

    图  21  变衰减周期的ILA004-N地震动加速度时程

    Figure  21.  Acceleration-time history of ILA004-N with different attenuation period

    图  22  变衰减周期对ILA004-N地震动反应谱的影响规律

    Figure  22.  Influence of attenuation period on the response spectrum of ILA004-N

    图  23  变衰减系数的ILA004-N地震动加速度时程

    Figure  23.  Acceleration-time history of ILA004-N with different attenuation coefficients

    图  24  变衰减系数对ILA004-N地震动反应谱的影响规律

    Figure  24.  Influence of attenuation coefficients on the response spectrum of ILA004-N

    表  1  选用远场类谐和地震动信息

    Table  1.   Parameters for far-filed harmonic ground motions

    台站 震级 震中距/
    km
    加速度峰值
    (PGA)/g
    速度峰值
    (PGV)/(m·s−1)
    位移峰值
    (PGD)/m
    持时
    Tp/s
    ILA004-N 7.62 88.89 0.064 0.026 0.020 5.255
    ILA004-W 7.62 88.89 0.073 0.030 0.024 5.128
    ILA005-N 7.62 84.88 0.080 0.016 0.012 4.823
    ILA005-V 7.62 84.88 0.026 0.011 0.010 9.680
    ILA041-N 7.62 85.66 0.063 0.022 0.018 4.920
    ILA048-N 7.62 92.04 0.077 0.025 0.019 4.390
    ILA055-N 7.62 88.05 0.069 0.024 0.021 5.450
    ILA055-W 7.62 88.05 0.076 0.030 0.026 5.045
    ILA056-N 7.62 92.04 0.066 0.032 0.025 5.010
    ILA056-W 7.62 92.04 0.071 0.033 0.032 5.410
    TCU008-E 7.62 84.95 0.068 0.029 0.038 7.640
    TCU083-E 7.62 80.18 0.091 0.031 0.043 7.460
    CHY032N 6.20 50.17 0.041 0.014 0.012 5.560
    CHY032E 6.20 50.17 0.033 0.007 0.005 4.240
    CAL-UP 7.20 54.77 0.041 0.007 0.005 4.334
    下载: 导出CSV

    表  2  远场类谐和地震动速度时程简化参数表

    Table  2.   Parameter metric for the simplification of far-field harmonic ground motions velocity time history

    地震波名称 成分 简谐段 衰减段
    初始幅值/(m·s−1) 周期Ts/s 持时Tp/s 初始幅值VA2/(m·s−1) 周期Ta/s 持时Td/s 衰减指数λ
    ILA004-N 低频 0.2200 5.255 21.02 0.140 3.8 53.78 1/12
    ILA004-W 低频 0.2400 5.128 25.64 0.110 6.0 54.28 1/15
    ILA005-N 主脉冲 0.1100 4.823 16.88 0.050 6.1 104.36 1/35
    ILA005-V 主脉冲 0.0700 9.680 9.68 0.040 4.8 121.20 1/35
    ILA041-N 低频 0.1900 4.920 12.30 0.120 4.0 49.60 1/25
    ILA055-N 低频 0.2000 5.450 16.34 0.140 5.0 124.06 1/25
    ILA055-W 低频 0.2300 5.045 20.18 0.100 5.1 122.06 1/35
    ILA056-N 低频 0.2500 5.010 20.04 0.110 3.0 67.26 1/20
    TCU083-E 主脉冲 0.2000 7.460 7.46 0.140 4.6 27.32 1/35
    CHY032E 主脉冲 0.0475 4.240 6.36 0.035 4.5 19.48 1/10
    CHY032N 主脉冲 0.0758 5.560 11.12 0.035 3.5 18.88 1/15
    CAL-UP 主脉冲 0.0550 4.334 6.50 0.028 4.0 156.12 1/80
    下载: 导出CSV

    表  3  所选远场类谐和地震动速度特征参数

    Table  3.   Characteristic parameter of velocity for selected ground motion

    地震动 简谐段 衰减段
    初始幅值VA1 周期Ts 持时Tp 初始幅值VA2 周期Ta 持时Td 衰减指数λ
    ILA048-N 0.20 4.39 8.78 0.12 3.8 72.52 1/25
    ILA056-W 0.24 5.41 24.34 0.12 4.5 71.14 1/20
    TCU008-E 0.19 7.64 7.64 0.18 4.5 22.50 1/12
    下载: 导出CSV
  • [1] 周福霖, 崔鸿超, 安部重孝, 等. 东日本大地震灾害考察报告[J]. 建筑结构, 2012, 42(4): 1 − 20.

    ZHOU Fulin, CUI Hongchao, SHIGETAKA A B E, et al. Inspection report of the disaster of the Ease Japan earthquake by Sino-Japanese joint mission [J]. Buildings, 2012, 42(4): 1 − 20. (in Chinese)
    [2] 李英民, 杨溥, 夏洪流, 等. 地震动频率非平稳特性对弹性反应谱的显著性影响分析[C]// 第五届全国地震工程会议论文集(I). 北京: 中国建筑学会, 1998: 482 − 488.

    LI Yingming, YANG Bo, XIA Hongliu, et al. Analysis of the significant effects of the non-stationary characteristics of the ground motion frequency on the elastic response spectrum [C]// Proceedings of the Fifth National Conference on Earthquake Engineering (I). Beijing: The Architectural Society of China, 1998: 482 − 488. (in Chinese)
    [3] 朱瑞广, 吕大刚. 基于Copula函数的主余震地震动强度参数相关性分析[J]. 工程力学, 2019, 36(2): 114 − 123. doi: 10.6052/j.issn.1000-4750.2017.12.0921

    ZHU Ruiguang, LYU Dagang. Copula-based correlation analysis of intensity measures of mainshock-aftershock ground motions [J]. Engineering Mechanics, 2019, 36(2): 114 − 123. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0921
    [4] ZHANG Y T, OUYANG X Y, SUN B Y, et al. A comparative study on seismic fragility analysis of RC frame structures with consideration of modeling uncertainty under far-field and near-field ground motion excitation [J]. Bulletin of Earthquake Engineering, 2022, 20(3): 1455 − 1487.
    [5] TODOROV B, BILLAH A M. Seismic fragility and damage assessment of reinforced concrete bridge pier under long-duration, near-fault, and far-field ground motions [J]. Structures, 2021, 31: 671 − 685.
    [6] HUANG N E , SHEN Z , LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]// Proceedings of the Royal Society of London. London: Tte Royal Society Publishing, 1998, 454(1971): 903 − 995.
    [7] WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, 460: 1579 − 1611.
    [8] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, l(1): l − 41.
    [9] 王博, 白国良, 王超群, 等. 基于Hilbert-Huang变换的长周期地震动能量时频分布比较研究[J]. 地震工程与工程振动, 2013, 33(3): 71 − 80.

    WANG Bo, BAI Guoliang, WANG Chaoqun, et al. Comparative study on energy time-frequency distribution of long-period ground motions based on Hilbert-Huang transform [J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(3): 71 − 80. (in Chinese)
    [10] 王博, 刘伯权, 吴涛 , 等. 长周期地震动低频脉冲特性及反应谱分析[J]. 地震工程与工程振动, 2018, 38(3): 142 − 151.

    WANG Bo, LIU Boquan, WU Tao, et al. Analysis of low-frequency pulse characteristics and response spectrum for long-period ground motions [J]. Journal of Earthquake Engineering and Engineering Vibration, 2018, 38(3): 142 − 151. (in Chinese)
    [11] FENG J, ZHAO B M, ZHAO T C. Quantitative identification of near-fault pulse-like ground motions based on variational mode decomposition technique [J]. Soil Dynamics and Earthquake Engineering, 2021, 151: 107009.
    [12] 杨成, 唐泽楠, 常志旺, 等. 基于经验模态分解的速度脉冲型地震动量化识别[J]. 工程力学, 2017, 34(4): 206 − 212. doi: 10.6052/j.issn.1000-4750.2016.04.0248

    YANG Cheng, TANG Zenan, CHANG Zhiwang, et al. EMD-BASED quantitative categorization for velocity pulse-like ground motions [J]. Engineering Mechanics, 2017, 34(4): 206 − 212. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.04.0248
    [13] 陈笑宇, 王东升, 付建宇, 等. 近断层地震动脉冲特性研究综述[J]. 工程力学, 2021, 38(8): 1 − 14, 54. doi: 10.6052/j.issn.1000-4750.2020.08.0582

    CHEN Xiaoyu, WANG Dongsheng, FU Jianyu, et al. State-of-art review on pulse characteristics of near –fault ground motions [J]. Engineering Mechanics, 2021, 38(8): 1 − 14, 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0582
    [14] 江辉, 李新乐. 近断层长周期脉冲型地震动对竖向反应谱的影响研究[J]. 振动与冲击, 2012, 31(16): 56 − 61. doi: 10.3969/j.issn.1000-3835.2012.16.012

    JIANG Hui, LI Xinle. Influence of near-fault long-period pulse-type earthquake ground motions on vertical response spectra [J]. Journal of Vibration and Shock, 2012, 31(16): 56 − 61. (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.16.012
    [15] 许智星, 孙颖, 谷音, 等. 长周期地震动参数及频谱特征[J]. 福州大学学报(自然科学版), 2013, 41(4): 760 − 764.

    XU Zhixing, SUN Ying, GU Yin, et al. The parameter and spectrum signature of long-period ground motion [J]. Journal of Fuzhou University (Natural Science Edition), 2013, 41(4): 760 − 764. (in Chinese)
    [16] 叶列平, 马千里, 缪志伟 . 结构抗震分析用地震动强度指标的研究[J]. 地震工程振动, 2009, 29(4): 9 − 22.

    YE Lieping, MA Qianli, MIAO Zhiwei. Study on earthquake intensities for seismic analysis of structures [J]. Earthquake Engineering and Engineering Dynamic, 2009, 29(4): 9 − 22. (in Chinese)
    [17] 李雪红, 李晔暄, 吴迪, 等. 地震动强度指标与结构地震响应的相关性研究[J]. 振动与冲击, 2014, 23: 184 − 189. doi: 10.13465/j.cnki.jvs.2014.23.033

    LI Xuehong, LI Yexuan, WU Di, et al. Correlation between ground motion intensity and structural seismic response [J]. Journal of Vibration and Shock, 2014, 23: 184 − 189. (in Chinese) doi: 10.13465/j.cnki.jvs.2014.23.033
    [18] 曲国岩, 俞瑞芳. 基于时-频包线的非平稳地震动合成及其对结构非线性响应的影响[J]. 振动工程学报, 2018, 31(2): 198 − 207. doi: 10.16385/j.cnki.issn.1004-4523.2018.02.002

    QU Guoyan, YU Ruifang. Simulation method of earthquake ground motion based on frequency-dependent amplitude envelope function and its influence on the structural nonlinear responses [J]. Journal of Vibration Engineering, 2018, 31(2): 198 − 207. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2018.02.002
    [19] 李帅, 张凡, 颜晓伟, 等. 近断层地震动合成方法及其对超大跨斜拉桥地震响应影响[J]. 中国公路学, 2017, 30(2): 86 − 97, 106.

    LI Shuai, ZHANG Fan, YAN Xiaowei, et al. Synthetic method for near-fault ground motions and its influence on seismic response of super-span cable-stayed bridge [J]. China Journal of Highway and Transport, 2017, 30(2): 86 − 97, 106. (in Chinese)
    [20] 胡进军, 靳超越, 张辉, 等. 匹配多目标参数的地震动合成方法[J]. 工程力学, 2022, 39(3): 126 − 136. doi: 10.6052/j.issn.1000-4750.2021.01.0095

    HU Jinjun, JIN Chaoyue, ZHANG Hui, et al. A ground motion synthesis method for matching multi-objective parameters [J]. Engineering Mechanics, 2022, 39(3): 126 − 136. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0095
    [21] 于晓辉, 吕大刚, 肖寒. 主余震序列型地震动的增量损伤谱研究[J]. 工程力学, 2017, 34(3): 47 − 53, 114. doi: 10.6052/j.issn.1000-4750.2016.03.0206

    YU Xiaohui, LYU Dagang, XIAO Han. Incremental damage spectra of mainshock-aftershock sequence-type ground motions [J]. Engineering Mechanics, 2017, 34(3): 47 − 53, 114. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0206
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  40
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-03
  • 修回日期:  2022-06-22
  • 网络出版日期:  2022-07-08
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回