文章编号: 1000-4750(2010)11-0204-09

多室内固体可燃物火灾烟气运动的大涡模拟

袁书生,*张 健

(清华大学工程力学系,北京 100084)

摘 要:建筑火灾中的火源多为固体可燃物。该文基于固体可燃物热解动力学模型,对多室内聚氨酯泡沫(PUF) 板热解与空间火蔓延及烟气运动的相互作用进行了大涡数值模拟。计算得到的PUF板质量变化速率和各房间内烟 气温度及CO₂与O₂浓度随时间的变化与实验基本相符合。CO₂浓度随时间变化达到的峰值在着火房间最高,在邻近 房间较低。O₂浓度随时间变化达到的谷值在着火房间最低,在邻近房间较高。烟气温度和浓度峰值与谷值的出现 与PUF板质量变化速率的峰值有关。

关键词: 多室火灾; 固体可燃物; 热解动力学模型; 大涡模拟; 烟气运动 中图分类号: TU998.1 文献标识码: A

LARGE EDDY SIMULATION OF THE FIRE SMOKE FLOW INDUCED BY SOLID COMBUSTIBLES IN A MULTI-ROOM

YUAN Shu-sheng, *ZHANG Jian

(Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China)

Abstract: The sources in building fire are mainly solid combustibles. Based on the pyrolysis kinetics model of solid combustibles, a large eddy simulation (LES) is applied to the study of the interactions between the pyrolysis of the polyurethane foam (PUF) slab and the space fire spread and smoke flow in a multi-room building. The calculated mass variation rate of the PUF slab with time and the evolutions of the smoke temperature and CO_2 and O_2 concentrations in each room agree generally with the measured test data. The peak in the evolution of the CO_2 concentration is high in the burn room and low in the neighboring rooms, while the valley in the evolution of O_2 concentration is low in the burn room and high in the neighboring rooms. The peaks and valleys found in the evolutions of the smoke temperature and concentrations are relevant to the peak in the mass variation rate of the PUF slab with time.

Key words: multi-room fire; solid combustibles; pyrolysis kinetics model; large eddy simulation; smoke flow

实际建筑火灾中的可燃物多半为固体材料。在 火灾中,固体可燃物会经历相变、热解、形态变化 和燃烧等复杂的过程。数值模拟特别是场模拟近年 来在建筑火灾的研究中得到了越来越多的应用。对 以固体可燃物为火源的建筑火灾进行数值模拟的 关键是要对固体可燃物的相变与燃烧行为进行合 理准确的描述,同时还需要考虑到固体可燃物相变 和燃烧与空间火蔓延和烟气运动的相互作用。

由于固体可燃物火灾过程的复杂性,目前对此 类火灾多采用实验研究。文献[1]对单层多室内聚氨 酯泡沫(PUF)板燃烧的火灾过程进行了实验研究。 文献[2]对多层多室建筑物内沙发和书架等固体可 燃物燃烧的火灾过程进行了实验研究和测量。在已 有的对建筑物内固体可燃物的火灾进行的数值模

收稿日期: 2009-05-11; 修改日期: 2009-12-22

基金项目:国家重点基础研究专项经费项目(2001CB409600)

作者简介: 袁书生(1963-), 男,河北武邑人,教授,博士,从事建筑火灾研究(E-mail: yss03@mails.tsinghua.edu.cn);

^{*}张 健(1963-),男,河北辛集人,教授,博士,博导,从事湍流多相流动与燃烧研究(E-mail: jianzhang@mail.tsinghua.edu).

拟研究中,对火源采用了简化的处理。一种常用的 方法是给定火源处释热率或释热率随时间的变化, 另一种方法则是假设可燃物表面相变热流与辐射 和对流热流相平衡^[3]。这样的处理使计算简便易行, 但均与实际的火灾过程有一定的偏差。聚氨酯泡沫 (PUF)材料较广泛地应用于各种生活与办公等物品 中,是建筑火灾中常见的一种固体可燃物。为了更 真实地描述实际火灾过程,本文针对PUF的相变与 燃烧特点,引入了PUF的热解动力学模型。在考虑 PUF板热解与空间火蔓延及烟气运动相互作用的条 件下,对多室内以PUF板为火源的烟气运动进行了 大涡数值模拟,并将模拟结果与实验数据进行了 比较。

1 数学模型与数值求解方法

文献[4]在锥形量热仪上研究了PUF板的热响应 过程,在辐射热流分别为25kW/m²和50kW/m²的条 件下,PUF板的总的质量损失分别为85%和88%, 而剩余的残余物则仍保持了固体状态。因此在火灾 条件下,PUF板呈现出固体表面燃烧方式,即经历 了热解和残炭反应等过程。在热重分析仪上对PUF 的热解实验表明,热解过程中PUF的失重达到了 80%以上^[5]。据此可认为PUF的固体表面燃烧以热 解释放出可燃气体为主,残炭的反应则可忽略 不计。

许多文献利用热重分析仪对PUF的热解进行了 实验研究,并提出了多种基于质量变化速率的PUF 热解反应动力学模型^[4-6]。在建筑火灾中,作为固 体可燃物的PUF物品的体积较大,其内部温度分布 很不均匀。本文对火灾中PUF板的热解采用文献[7] 根据文献[5]得到的PUF在热重分析仪上的热解失 重实验数据,按PUF表面移动速率给出的下述热解 动力学模型:

$$\frac{\mathrm{d}s}{\mathrm{d}t} = A'\phi(\eta)\rho_0 Y_{ox} \exp\left(-\frac{E}{RT_w}\right) \tag{1}$$

其中: ds/dt为失重引起的PUF表面局部移动速率; $\phi(\eta)$ 表征与反应物浓度相关的动力学函数, $\phi(\eta)=1/\eta$; η 为PUF转化为气体的质量分数; ρ_0 为 25℃下的空气密度,取为 $\rho_0=1.187$ kg/m³; $Y_{\alpha x}$ 为PUF 表面的氧气质量分数; T_w 为PUF热解表面的局部温 度; 频率因子 A' 和活化能E的取值分别为3.92× 10¹¹m⁴/(kg·s)和1.53×10⁵J/mol。令 $A=A'\phi(\eta)\rho_0Y_{\alpha x}$, 可进一步将PUF板热解的表面移动速率表示为:

$$\frac{\mathrm{d}s}{\mathrm{d}t} = A \exp\left(-\frac{E}{RT_w}\right) \tag{2}$$

为计算 PUF 板表面的温度分布,针对 PUF 板的长度和宽度均远大于其厚度的特点,建立了下述 PUF 板沿厚度方向的局部一维非稳态导热方程:

$$\rho_s c_s \frac{\partial T_s}{\partial t} = \frac{\partial}{\partial x} \left(\lambda_s \frac{\partial T_s}{\partial x} \right)$$
(3)

PUF 板相变表面的边界条件或热量平衡关系式为:

$$-\lambda_s \frac{\partial T_w}{\partial x} = q_c + q_r - \rho_s \Delta H_v \frac{\mathrm{d}s}{\mathrm{d}t}$$
(4)

式中: ρ_s 和 ΔH_v 分别为 PUF 板的密度和热解吸热量; q_r 和 q_c 分别为 PUF 板相变表面接受到的火灾烟气 净辐射热流和对流热流密度,由空间火蔓延与烟气 运动的大涡模拟结果得到。

对室内空间火蔓延与烟气运动采用低马赫数下 受浮力作用的湍流瞬时控制方程组描述。应用盒式 滤波器作Favre滤波运算,可得下述大涡模拟控制方 程组^[8-9]:

连续方程:

$$\frac{\partial \overline{\rho}}{\partial t} + \nabla \cdot \overline{\rho} \tilde{u} = 0 \tag{5}$$

动量方程:

$$\overline{\rho}\left(\frac{\partial \tilde{u}}{\partial t} + (\tilde{u} \cdot \nabla \tilde{u})\right) + \nabla \overline{p} = \overline{\rho}g + \nabla \cdot \overline{\tau}_l + \nabla \cdot \tau \quad (6)$$

能量方程:

$$\frac{\partial}{\partial t}(\overline{\rho}\tilde{h}) + \nabla \cdot (\overline{\rho}\tilde{u}\tilde{h}) = \frac{D\overline{p}}{Dt} + \nabla \cdot (\lambda\nabla\tilde{T}) + \nabla \cdot q - \nabla \cdot q_r + \sum_s \nabla \cdot (\tilde{h}_s \overline{\rho} D_s \nabla\tilde{Y}_s) \quad (7)$$

组分方程:

$$\frac{\partial}{\partial t} (\overline{\rho} \tilde{Y}_s) + \nabla \cdot (\overline{\rho} \tilde{u} \tilde{Y}_s) = \nabla \cdot (\overline{\rho} D_s \nabla \tilde{Y}_s) + \nabla \cdot J_s - \overline{W}_s$$
(8)

其中τ、q和J。分别为亚格子湍流应力、热流通量和 质量流通量。对它们分别采用Smagorinsky模型^[10] 和涡扩散模型进行模拟。对湍流燃烧采用快速反应 的混合物分数模型模拟,对辐射传热采用有限体积 法模拟。

在交错网格系上对经变换和简化后的大涡模拟 控制方程组进行离散化。各方程在时间上的离散采 用显式的二阶精度的预测-校正格式,在空间上的离 散采用二阶精度的差分格式。其中对对流项在预测 步采用偏向迎风的差分格式,在校正步采用偏向背风的差分格式,对扩散项则采用中心差分格式。建立压力的Poisson方程并采用FFT方法直接求解。对PUF板导热方程的离散化采用二阶隐式的Crank-Nicholson格式。由于PUF板瞬时温度和质量的变化速率比烟气瞬时温度和组分浓度的变化速率相对要慢,空间火蔓延与烟气运动的大涡模拟每计算3个时间步长,进行1次PUF板温度、热解速率和热解表面位置的更新计算。并将得到的PUF板热解速率、热解表面位置和表面温度作为空间火蔓延与烟气运动大涡模拟计算的新的边界条件,以此考虑PUF板热解与空间火蔓延的相互耦合与作用。计算的时间步长由满足数值稳定性要求的CFL数确定。

2 模拟对象与工况参数

本文对多室内PUF板热解与空间火蔓延相互作 用以及火灾烟气运动进行了大涡模拟。计算选取与 文献[1]实验相同的条件,研究对象由3个房间与1个 走廊组成,房间和走廊的高度均为2.4m,平面尺寸 见图1(a)。各房间之间及房间与走廊之间通过102 门、103门和104门连接,走廊与外界通过101门相 通。所有门尺寸相同,均为宽0.8m、高2m。着火房 间(102室)的窗户W2宽2.4m、高1.5m, 邻近房间(101 室)的窗户W1宽0.6m、高1.5m,窗台高度均为0.5m。 窗户W2由3扇组成,两侧窗扇是可滑动的,尺寸为 宽0.6m、高1.5m, 玻璃厚度为0.003m; 中间一扇为 固定的,尺寸为宽1.2m、高1.5m,玻璃厚度为 0.004m。窗户W1玻璃的厚度为0.003m。各房间和 走廊均为水泥地面,顶棚和各墙面为耐火石膏材 料。作为固体可燃物的PUF板即床垫位于着火房间 中心,如图1(b)所示水平放置在金属支架上。PUF 板的尺寸长0.95m、宽0.94m、厚0.15m,支架高度 为0.5m。点火源为800℃的电点火器,放在PUF板上 表面的中心,起火后移去点火器。实验中所有门均 打开,两个窗户均关闭并保持完好。数值模拟时, 假设点火源为800℃的恒温固体,其长宽高的尺寸均 为0.06m,待PUF板燃烧稳定(出现空间火焰)后移 走,将在PUF板上放置点火源的开始时间作为计算 的初始时刻即t=0。

为了提高计算精度,并尽可能减少计算量,对 计算网格实施分区划分,着火房间采用较密的网 格,其它房间和走廊采用相对较稀疏的网格,各坐 标方向上均采用均匀网格划分。着火房间(102室) 的空间网格数为90×60×60,101室的空间网格数为40×80×40,103室的空间网格数为60×50×40,走廊的空间网格数为250×25×40。计算的总时间取为400s。

本文的计算基于火灾动力学模拟软件FDS4.0进 行^[9]。计算中,对墙壁、地板与顶棚采用厚壁假设, 即建立局部一维非稳态导热方程计算它们的温度, 对窗玻璃采用薄壁假设,即建立局部零维非稳态导 热方程计算其温度。考虑墙壁外表面、顶棚上表面 及玻璃外表面与环境空气之间的辐射与对流换热, 假设地板的下表面绝热。对PUF板热解过程中的表 面形状采用阶梯型近似,认为PUF板所有的水平表 面与烟气交换热量,竖直表面则为绝热,沿板厚方 向内节点数取为30。PUF板表面的辐射发射系数取 为0.92, 其它所有固体表面的辐射发射系数取为 0.9。 取环境温度为20℃。 PUF板密度为ρ= 24kg/m^{3[1]},热解吸热量ΔH_v=1215kJ/kg^[11]。设PUF 热解后全部转化为气态可燃物,其化学成分为 CH1.91N0.055O0.263^[1]。在PUF的热解动力学模型中, 有 $\eta=1$,即 $\phi(\eta)=1/\eta=1$,取 Y_{ox} 为环境氧浓度,即 $Y_{ox}=0.21$,于是可得 $A=9.77\times10^{10}$ m/s。

3 结果与讨论

图2-图13给出多室内以PUF为固体可燃物的 火灾烟气运动的模拟结果。图2为PUF板质量变化速 率随时间变化的计算结果及其与文献[1]实验数据 的对比。由图可以看出,采用热解动力学模型得到 的PUF板的质量变化速率与实验相符合。受空间火 蔓延和热烟气辐射与对流热流的作用,PUF板的质 量变化速率从*t*=40s开始随时间逐渐增加,在*t*=180s 时达到峰值。之后随PUF板热解消耗导致的质量减 少,其质量变化速率也逐渐下降。计算得到的PUF 板的质量变化速率的峰值比实验要略大一些,出现 峰值的时间也要比实验早一些,达到峰值后PUF板 质量变化速率的下降也要快一些。

Fig.2 Comparison of calculated evolution of mass variation rate of the PUF slab with measured data

图3(a)与图3(b)给出了着火房间(102室)不同位 置上烟气温度随时间变化的计算结果及其与实验 的对比。由图3可见,计算与实验相符合。各点处 的烟气温度均随时间先逐渐上升,达到峰值后再逐 渐下降。计算得到的烟气温度的峰值比实验要低一 些,出现峰值的时间也要早一些。从图3中还可以 看到,尽管处在房间的不同水平位置上,但在房间 上层的同一高度处,烟气温度开始上升的时间是相 同的,均为*t*=40s。

Fig.3 Comparison of calculated evolution of smoke temperature with measured data in the burn room (room 102)

图4(a)-图4(d)给出了邻近房间(101室)内不同 位置与高度上烟气温度随时间变化的计算结果及 其与实验的对比。大涡模拟计算得到的是烟气的瞬 时温度,图4中出现的烟气温度计算结果随时间的 振荡体现了湍流脉动的作用。由图4可见,邻近的 101室房间内烟气温度的预报与实验基本相符合。 与PUF板的质量变化速率相对应,101室内各点处的 烟气温度随时间先是逐渐地升高并达到峰值, 然后 又逐渐下降。房间上层位置处(z=1.9m)要大于下层 位置处(z=1.0m)的烟气温度峰值。由于该房间的窗 户靠近着火房间(102室),在房间上层的同一高度 处,窗户附近要大于远离窗户处的烟气温度峰值。 计算得到的各点处烟气温度的峰值要比实验高一 些,峰值出现的时间要早一些,达到峰值后烟气温 度的下降也要比实验快一些。从图3还可以看到, 尽管处在房间的不同水平位置上,在房间上层的同 一高度处,烟气温度开始上升的时间是相同的,均 为t=100s。而在房间下层的同一高度的不同位置处, 烟气温度开始上升的时间也是相同的,均为t=150s。

图5(a)与图5(b)给出邻近房间(103室)内不同高度上烟气温度随时间变化的计算结果及其与实验的比较。由图5可见,计算与实验基本相符合。不同高度处的烟气温度随时间先逐渐上升,然后又逐渐下降。烟气温度在上层位置处达到的峰值要大于下层位置处。计算得到的烟气温度的峰值要比实验低,且峰值出现的时间也要早一些。在房间上层位置处,烟气温度开始上升的时间为*t*=140s。在房间下层,烟气温度开始上升的时间为*t*=160s。

计算结果与实验的对比 Fig.5 Comparison of calculated evolution of smoke temperature with measured data in the neighboring room (room 103)

图6(a)与图6(b)给出了走廊内不同高度上烟气 温度随时间变化的计算结果及其与实验的比较,二 者是基本相符合的。各点处的烟气温度均随时间先 逐渐增加,达到峰值后逐渐下降。走廊上层位置处 要大于下层位置处烟气温度达到的峰值。但在上层 位置处,烟气温度峰值的计算结果要低于实验值。 在走廊上层和下层,烟气温度开始上升的时间分别 为t=140s和t=170s。

对比图3-图6可以看出,上层位置处烟气温度 随时间变化达到的峰值在着火房间(102室)最高,在 邻近的101室房间次之,在103室房间更低一些,在 走廊内最低。说明离火源越远,烟气运动距离越长, 其温度越低。在火灾发生后,烟气较快地向邻近房 间传递,到达101室的时间最短,到达103室和走廊 的时间稍长一些。

图7(a)和图7(b)给出了着火房间(102室)内烟气 组分浓度随时间变化的计算结果及其与实验的对 比。由图7可见,计算得到的O₂和CO₂浓度与实验基 本相符合。O₂浓度随时间先是逐渐减少,达到谷值 后又逐渐上升。CO₂浓度则随时间逐渐增加并达到 峰值,然后又逐渐下降。浓度谷值与峰值的出现与 PUF板质量变化速率的峰值有关,二者是有相互耦 合关系的。但计算得到的O₂浓度谷值和CO₂浓度峰 值分别要比实验值偏低和偏高,谷值和峰值出现的 时间也要比实验早一些。CO₂浓度开始上升的时间 为*t*=40s,这与PUF板的质量变化也是对应的。

图8(a)和图8(b)给出了相邻房间内O₂体积分数 随时间变化的计算结果及其与实验的对比。由图8 可见,101室和103室内的O₂浓度计算结果均与实验 相符合。两个相邻房间内的O₂浓度均随时间先逐渐 下降,达到谷值后再逐渐升高。由于101室离着火 房间更近,该室比103室内O₂浓度的谷值要低一些。

图9(a)和图9(b)给出相邻房间内CO₂体积分数随时间变化的计算结果及其与实验的对比。101室和103室内的CO₂浓度均随时间先逐渐增加并达到峰值,之后再逐渐下降,计算与实验相符合。101室比103室内CO₂浓度达到的峰值要高一些,但后者CO₂浓度随时间的下降要更慢一些。101室CO₂浓度 开始上升的时间为*t*=100s,而103室在*t*=140s时CO₂浓度开始上升。

Fig.7 Comparison of calculated evolution of species concentrations with measured data in the burn room (room 102)

计算结果与实验的对比

Fig.9 Comparison of calculated evolution of CO₂ volume fraction with measured data in the neighboring rooms

从以上结果可以看到,CO₂浓度随着时间变化 达到的峰值在着火房间(102室)最高,在邻近的101 室房间次之,在103室房间较低。O₂浓度随着时间 变化达到的谷值在着火房间最低,在邻近的101室 房间次之,在103室房间较高。组分浓度随时间的 变化与烟气温度的变化是相一致的。由于烟气从着 火房间向邻近房间的传递得很快,因而不仅对着火 房间,而且对邻近房间均有较大的危害性。

文献[1]采用固体可燃物表面的热流平衡模型 和 $k-\varepsilon$ 湍流模型,对图1所示多室内以PUF板为可燃 物的火灾烟气运动进行了数值模拟。计算得到的 PUF板质量变化速率比实验值偏低,着火房间和邻 近房间的烟气温度则均比实验值偏高。本文的计算 比文献[1]的计算结果有一定的改进。从图3-图9可 以看到, 计算得到的各房间和走廊内不同位置处烟 气温度和组分浓度随时间的变化均与实验基本相 符合,预报出了实验出现的峰值或谷值。但峰值或 谷值的大小与实验尚有偏差,出现峰值或谷值的时 间比实验偏早。这与PUF板质量变化速率计算结果 与实验的偏差是相对应的。为进一步改进模拟结 果,应当改进PUF板热解模型,对PUF板热解采用 多维非稳态导热方程计算。此外,着火房间内O2和 CO2浓度计算结果与实验的偏差相对较大。因此还 应当改进大涡模拟使用的湍流燃烧模型,采用更细 密的网格划分进行计算。

图10(a)和图10(b)给出了着火房间(102室)中心 截面(y=1.2m)上两个不同时刻烟气速度矢量分布的 计算结果。由图10(a)可以看出,当t=150s时,从门 口下部卷吸进入室内的空气速度仍不高,火羽流基 本呈对称形状。图10(b)则说明,t=200s时,通过门 口下部卷吸进入室内的空气速度明显增大,这导致 火羽流向后墙一侧偏移。

Fig.10 Calculated distributions of the smoke velocity vector on the central plane of the burn room (room 102)

图11(a)-图11(d)给出了邻近房间(101室)中心 截面(x=-1.2m)上两个不同时刻烟气温度与CO₂浓 度分布的模拟结果。当t=150s(见图11(a)和图11(b)) 时,101室内烟气温度和CO₂浓度呈现出分层分布, 烟气层高度较为均匀,约为1.1m左右。但房间上层 靠近窗户W1的局部区域内烟气温度和CO₂浓度相 对较高。随着时间的增加,当t=200s(见图11(c)和 图11(d))时,烟气温度和CO₂浓度增加,烟气层高度 下降,且烟气层高度不再均匀。在102门和窗户W1 附近区域烟气层仍有一定高度,而在房间中间靠近 103室的区域,烟气层已接近于地面。

CO₂ concentration on the central plane of the neighboring room (room 101)

图12(a) - 图12(d)给出了邻近房间(103室)内中 心截面(y=3.8m)上在两个不同时刻烟气温度与CO₂ 浓度分布的模拟结果。由图12(a)和图12(b)可以看 到,当t=150s时,室内上部区域门拱附近的烟气温 度与CO₂浓度较高,室内烟气温度与CO₂浓度基本 上呈现出分层分布,烟气层高度约为1.3m左右。从 图12(c)和图12(d)可以看到,随着时间的增加,当 t=200s时,室内烟气温度与CO₂浓度有明显的增加,烟气层已下降至较低的高度上。

CO2浓度分布的计算结果

Fig.12 Calculated distributions of the smoke temperature and CO₂ concentration on the central plane of the neighboring room (room 103)

图13(a)-图13(d)给出走廊中心截面(y=6.0m)上两个不同时刻烟气温度与CO₂浓度分布的模拟结果。从图13(a)与图13(b)给出的t=150s时的结果和图13(c)与图13(d)给出的t=200s时的结果可以看到,除102门拱附近局部区域的烟气温度和CO₂浓度较高外,走廊内烟气温度和CO₂浓度呈现出分层的分布。随着时间的增加,烟气温度与CO₂浓度增加,烟气层高度则从t=150s的1.6m左右下降到t=200s的0.6m左右,但走廊内的烟气层高度仍基本保持了相对均匀的分布。

4 结论

本文基于PUF热解动力学模型,对多室内以 PUF板为固体可燃物的火灾烟气运动进行了大涡模 拟,得到以下结论:

(1) 通过考虑PUF板热解与空间火蔓延的相互 作用,计算出了PUF板的瞬时质量变化速率随时间 的变化,并与实验相符合。同时还获得了火灾烟气 运动的演化过程。

(2) 计算得到的多室火灾中各房间和走廊内烟 气温度和CO₂与O₂浓度随时间的变化与实验基本相 符合。CO₂浓度随时间变化达到的峰值在着火房间 最高,在邻近房间较低。O₂浓度随时间变化达到的 谷值在着火房间最低,在邻近房间较高。烟气温度 随时间变化达到的峰值在着火房间最高,在邻近房 间次之,在走廊内最低。这些峰值与谷值的出现与 PUF板质量变化速率的峰值有关。

(3) 火灾发生后,烟气较快地从着火房间向邻近房间传递,到达紧邻房间的时间最短,到达其它房间和走廊的时间稍长一些。在各邻近房间和走廊内,上层位置处比下层位置处烟气温度开始上升的时间要早一些。

参考文献:

- Luo M C, Beck V. A study of non-flashover and flashover fires in a full-scale multi-room building [J]. Fire Safety Journal, 1996, 26(3): 191–219.
- [2] He Y P. Measurement of doorway flow field in multi-enclosure building fires [J]. International Journal of Heat and Mass Transfer, 1999, 42(17): 3253-3265.
- [3] Luo M C, He Y P, Beck V. Application of field model and two-zone model to flashover fires in a full-scale multi-room single level building [J]. Fire Safety Journal, 1997, 29(1): 1-25.
- [4] Branca C, Blasi C D, Casu A, Morone V, Costa C. Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion [J]. Thermochimica Acta, 2003, 399(2): 127-137.
- [5] Chao C Y H, Wang J H. Comparison of the thermal decomposition behavior of a non-fire retarded and a fire retarded flexible polyurethane foam with phosphorus and brominated additives [J]. Journal of Fire Science, 2001, 19(2): 137–156.
- [6] Bilbao R, Mastral J F, Ceamanos J, Aldea M E. Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres [J]. Journal of Analytical and Applied Pyrolysis, 1996, 37(1): 69-82.
- [7] Wang J H, Chao C Y H, Kong W J. Experimental study and asymptotic analysis of horizontally forced forward smoldering combustion [J]. Combustion and Flame, 2003, 135(4): 405-419.
- [8] McGrattan K B, Baum H R, Rehm R G. Large eddy simulations of smoke movement [J]. Fire Safety Journal, 1998, 30(2): 161–178.
- [9] McGrattan K B, Forney G. Fire dymanics simulator-(version 4) technical reference guide [R]. Washington, DC, USA: NIST Special Publication 1018, 2004.
- [10] Smagorinsky J. General circulation experiments with the primitive equations I: the basic experiment [J]. Monthly Weather Review, 1963, 91(3): 99–164.
- [11] Reneke P A, Peatross M J, Jones W W, Deyler C L, Richards R. A comparison of CFAST predictions to USCG real-scale fire tests [J]. J Fire Protection Engineering, 2001, 11(1): 43-68.