文章编号:1000-4750(2006)07-0124-06

多点输入反应谱中相关系数*P_{iikl}*的简化

*孙建梅^{1,2}, 叶继红², 程文瀼²

(1. 同济大学土木工程学院,上海 200092; 2. 东南大学土木工程学院,东南大学 RC&PC 结构教育部重点实验室,南京 210096)

摘 要:对多点输入反应谱计算公式中的相关系数进行了简化,简化从频响函数和积分的特性两方面进行。首先 将 $H_i(\omega)H_j(\omega)^*$ 写成实部与虚部和的形式,然后根据积分的特性,将相关系数中的积分次数由原来的 $i \times j \times k \times l$ 次(*i、j*为结构的振型个数;*k、l*为结构的支承点个数)减少到 $5 \times j \times k \times l$ 次,仍为精确解,且计算时间大大缩短, 使多点输入反应谱法的推广应用成为可能。 关键词:多点输入;反应谱法;相关系数;简化;频响函数 中图分类号:TU311.3 文献标识码:A

THE SIMPLIFICATION OF THE COHERENCY COEFFICIENTS ρ_{ijkl} IN THE MULTI-SUPPORT RESPONSE SPECTRUM

*SUN Jian-mei^{1,2}, YE Ji-hong², CHENG Wen-rang²

(1. Department of Civil Engineering, Tongji University, Shanghai 200092, China;

2. Department of Civil Engineering, Southeast University, Key Lab of RC & PC Structure, Ministry of Education, Nanjing, Jiangsu 210096, China)

Abstract: The coherency coefficients in the multi-support response spectrum analysis are modified from two aspects: the characteristics of the frequency response function and the integral. First of all, $H_i(\omega)H_i(\omega)^*$ is

separated into real and image components .Then, according to the integral characteristic, the integration layers of the coherency coefficients ρ_{ijkl} are reduced from $i \times j \times k \times l$ (*i*, *j* are the numbers of the vibration mode; *k*, *l* are

the numbers of the support) to $5 \times j \times k \times l$, which shortens the calculated time but it is still accurate. The simplification makes the multi-support response spectrum analysis easier to conduct.

Key words: multi-input excitation; response spectrum method; coherency coefficient; simplification; frequency response function

众所周知,地震动具有随时间和空间变化的特性,这种特性对于大跨空间结构的影响尤为显著。 为此人们在随机振动理论的基础上推导了多点激励反应谱计算公式,其中主要以 Der Kiureghian 和 Neuenhofer 的 MS-CQC 法、Heredia-Zavoni 和 Vanmarcke 的 H-V 法为代表^[1,2],但是这些反应谱法 用于实际工程则相当困难,原因在于其表达式中的 相关系数求解复杂,即需要通过大量的数值积分。

目前,关于相关系数简化问题国内外均未得到很好

解决,严重限制了多点输入反应谱的推广应用。

本文作者基于虚拟激励法^[3~5]推导了多点输入 反应谱计算公式,形式较文献[1,2]更为简洁,且与 我国《建筑结构抗震规范》的反应谱建立了定量关 系,但其中的相关系数要通过*i*×*j*×*k*×*l*次(*i*、*j*为

收稿日期: 2004-09-21;修改日期: 2005-06-30

基金项目:国家自然科学基金资助项目(50108003)

作者简介:*孙建梅(1974), 女,河北保定人,博士后,从事结构工程研究(E-mail:ljjsunjianmei@sina.com); 叶继红(1967), 女,辽宁锦州人,教授,博士,从事大跨空间结构研究; 程文瀼(1936), 男,浙江平湖人,教授,博导,从事结构工程研究。

结构的振型个数;k、l为结构的支承点个数)数值积 分才能得到。国外学者 Chin-Hsiung Loh 在文献[6] 提出了一种简化方法,需经过8×j×k×l次积分得 到相关系数的解;文献[7]的简化方法则主要从地震 动功率谱密度函数和频响函数两方面入手,简化后 的系数不需要再进行繁杂的积分运算,节省了计算 时间,但是计算精度却不易保证。本文首先将 $H_i(\omega)H_i(\omega)^*$ 写成实部与虚部和的形式,然后根据 积分的特性,将相关系数中的积分次数成倍减少, 最后只需要 $5 \times i \times k \times l$ 次积分即可得到精确解。

多点输入反应谱计算公式 1

关于推导基于虚拟激励原理的多点输入反应 谱计算公式的具体过程见文献[8],其最终表达式 为:

 $E[\max | \ddot{X}(t) |]^p =$

$$\left[\sum_{i=1}^{q}\sum_{j=1}^{q}\phi_{zi}\phi_{zj}\gamma_{i}\gamma_{j}S_{a}(\omega_{i},\xi_{i})S_{a}(\omega_{j},\xi_{j})\sum_{k=1}^{m}\sum_{l=1}^{m}\beta_{ik}\beta_{jl}\rho_{ijkl}^{2}\right]^{1/2}$$

$$\sum_{k=1}^{m}\sum_{l=1}^{m}r_{zk}r_{zl}\rho_{kl}^{2}\ddot{u}_{k,\max}\ddot{u}_{l,\max}\left[1\right]^{1/2}$$
(1)

 $\rho_{u_k u_l}^2 = \frac{1}{\sigma_{ii}^p \sigma_{ii}^p} \operatorname{Re} \left[\int_{0}^{+\infty} \rho_{kl}(\omega) S(\omega) d\omega \right]$ 其中 (2)

为支承位移的互相关系数; ρ_{iikl}^2 为耦合系数,其下 角标已指明了耦合对象,即i,j为振型阶数;k、l 为地面支承点编号,假设各支承点具有相同的自功 率谱密度函数 $S(\omega)$,

$$\rho_{ijkl}^{2} = \frac{\operatorname{Re}\left[\int_{0}^{+\infty} \rho_{kl}(\omega) H_{i}^{*}(\omega) H_{j}(\omega) S(\omega) d\omega\right]}{\sigma_{\tilde{s}_{ki}}^{p} \sigma_{\tilde{s}_{ij}}^{p}}$$
(3)

$$\sigma_{ii_k}^{p^2} = \sigma_{ii_l}^{p^2} = \int_0^{+\infty} S(\omega) \mathrm{d}\omega$$
(4)

$$\sigma_{\vec{s}_{ij}}^{p^2} = \int_{0}^{+\infty} |H_i(\omega)|^2 S(\omega) d\omega = \sigma_{\vec{s}_i}^2$$

$$\sigma_{\vec{s}_{ij}}^{p^2} = \int_{0}^{+\infty} |H_j(\omega)|^2 S(\omega) d\omega = \sigma_{\vec{s}_j}^2$$
(5)

 ϕ_{zx} , ϕ_{zi} 为结构 z 自由度第 i, j 振型的幅值; γ_{x} , γ_{i}

为 i、 j 振型参与系数, $\gamma_i = {\phi_i}^T[M]{H}/{$ $\{\phi_i\}^{\mathrm{T}}[M]\{\phi_i\} = \{\phi_i\}^{\mathrm{T}}[M]\{H\} ; S_a(\omega_i,\xi_i) \setminus S_a(\omega_i,\xi_i)$ 为一致输入下*i*、*j*振型加速度反应谱; β_{ik} 、 β_{jl} 的 表达式为 $\beta_{jl} = \{\phi_j\}^T [M_{ss}] \{r_l\} / \{\phi_j\}^T [M_{ss}] \{\phi_j\}$; r_{zk} , r_{zl} 分别为矩阵 [R] 的 z 行 k 列、 z 行 l 列元素, $[R] = [K_{ss}]^{-1}[K_{sm}]$,其中, $[K_{ss}]$ 是结构非支承点 的刚度矩阵, [K_m]是结构非支承点与支承点的耦 合刚度矩阵; $\rho_{kl}(\omega)$ 为相干函数, 其下角标 k, l为地面支承点编号; $\ddot{u}_{k,\max}$ 、 $\ddot{u}_{l,\max}$ 为地面支承点 k、 1的最大输入加速度。

公式(1)中计算耗时长的主要原因是 ρ_{iikl} 要经 过复杂的 $i \times j \times k \times l$ 次积分才能得到,在支座和参 与振型都比较多的情况下,这种缺欠尤为显著,因 此本文对系数 ρ_{iikl} 进行简化。

₊ 2 相关系数 *ρ_{iikl}* 的简化

式(3)中 $H_i(\omega)H_i(\omega)^*$ 可以写成实部与虚部和的 形式^[2],则式(3)中的分子为

$$\operatorname{Re} \int_{0}^{+\infty} H_{i}^{*}(\omega) H_{j}(\omega) S_{\ddot{u}_{k}\ddot{u}_{i}}(\omega) d\omega = \int_{0}^{+\infty} \left\{ \operatorname{Re} [H_{i}(\omega) H_{j}(\omega)^{*}] \operatorname{Re} (S_{\ddot{u}_{k}\ddot{u}_{i}}) - \operatorname{Im} [H_{i}(\omega) H_{j}(\omega)^{*}] \operatorname{Im} (S_{\ddot{u}_{k}\ddot{u}_{i}}) \right\} d\omega$$
(6)

由文献[2]知 $H_i(\omega)H_i(\omega)^*$ 的实部为

$$Re[H_{i}(\omega)H_{j}(\omega)^{*}] = \frac{1}{2}[A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})]|H_{i}(\omega)|^{2} + \frac{1}{2}[A_{ji} - B_{ji}(1 - \omega_{j}^{2} / \omega^{2})]|H_{j}(\omega)|^{2}$$
(7)
H(\overline(m)^{*}的感部为

 $H_i(\omega)H_j(\omega)$ 的虚部.

$$\operatorname{Im}[H_{i}(\omega)H_{j}(\omega)^{*}] = 2\left[\left(\frac{C_{ij}}{\omega_{i}}\omega + \frac{D_{ij}}{\omega_{i}^{3}}\omega^{3}\right)|H_{i}(\omega)|^{2} - \left(\frac{C_{ji}}{\omega_{j}}\omega + \frac{D_{ji}}{\omega_{j}^{3}}\omega^{3}\right)|H_{j}(\omega)|^{2}\right]$$
(8)

其中系数 A_{ii} 、 B_{ii} 、 A_{ii} 、 B_{ii} 、 C_{ii} 、 D_{ii} 、 C_{ii} 和 D_{ii} 的解 析表达式见文献[2]。将式(7)、式(8)代入式(6)得

$$\operatorname{Re}\int_{0}^{+\infty} H_{i}^{*}(\omega)H_{j}(\omega)S_{\ddot{u}_{k}\ddot{u}_{i}}(\omega)d\omega = \int_{0}^{+\infty} \left\{ \operatorname{Re}[H_{i}(\omega)H_{j}(\omega)^{*}] \cdot \operatorname{Re}(S_{\ddot{u}_{k}\ddot{u}_{i}}) - \operatorname{Im}[H_{i}(\omega)H_{j}(\omega)^{*}] \cdot \operatorname{Im}(S_{\ddot{u}_{k}\ddot{u}_{i}}) \right\} d\omega = \int_{0}^{+\infty} \left\{ \frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} + \frac{1}{2} [A_{ji} - B_{ji}(1 - \omega_{j}^{2} / \omega^{2})] |H_{j}(\omega)|^{2} \right\} \cdot \operatorname{Re}(S_{\ddot{u}_{k}\ddot{u}_{i}}) dw - \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} + \frac{1}{2} [A_{ji} - B_{ji}(1 - \omega_{j}^{2} / \omega^{2})] |H_{j}(\omega)|^{2} \right\} \cdot \operatorname{Re}(S_{ii_{k}\ddot{u}_{i}}) dw - \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} + \frac{1}{2} [A_{ji} - B_{ji}(1 - \omega_{j}^{2} / \omega^{2})] |H_{j}(\omega)|^{2} \right\} \cdot \operatorname{Re}(S_{ii_{k}\ddot{u}_{i}}) dw - \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij} - B_{ij}(1 - \omega_{i}^{2} / \omega^{2})] |H_{i}(\omega)|^{2} \right] + \frac{1}{2} \left[\frac{1}{2} [A_{ij}$$

$$\int_{0}^{+\infty} \left\{ 2 \left[\left(\frac{C_{ij}}{\omega_{i}} \omega + \frac{D_{ij}}{\omega_{i}^{3}} \omega^{3} \right) |H_{i}(\omega)|^{2} - \left(\frac{C_{ji}}{\omega_{j}} \omega + \frac{D_{ji}}{\omega_{j}^{3}} \omega^{3} \right) |H_{j}(\omega)|^{2} \right] \right\} \cdot \operatorname{Im}(S_{\tilde{u}_{k}\tilde{u}_{j}}) dw$$

$$\tag{9}$$

根据积分表达式的性质 ,可以将式(9)写成如下形式

$$\operatorname{Re}\int_{0}^{+\infty} H_{i}^{*}(\omega)H_{j}(\omega)S_{\vec{u}_{k}\vec{u}_{l}}(\omega)d\omega = \int_{0}^{+\infty} \left\{\operatorname{Re}[H_{i}(\omega)H_{j}(\omega)^{*}] \cdot \operatorname{Re}(S_{\vec{u}_{k}\vec{u}_{l}}) - \operatorname{Im}[H_{i}(\omega)H_{j}(\omega)^{*}] \cdot \operatorname{Im}(S_{\vec{u}_{k}\vec{u}_{l}})\right\} d\omega = \left\{\frac{1}{2}[A_{ij} - B_{ij}(1 - \omega_{i}^{2}\gamma_{-2}/\gamma_{0})]\int_{0}^{+\infty} |H_{i}(\omega)|^{2} \cdot \operatorname{Re}(S_{\vec{u}_{k}\vec{u}_{l}}) d\omega + \frac{1}{2}[A_{ji} - B_{ji}(1 - \omega_{j}^{2}\gamma_{-2}/\gamma_{0})]\int_{0}^{+\infty} |H_{j}(\omega)|^{2} \cdot \operatorname{Re}(S_{\vec{u}_{k}\vec{u}_{l}}) d\omega\right\} - \left\{2\left[\left(\frac{C_{ij}}{\omega_{i}\gamma_{0}}\gamma_{1} + \frac{D_{ij}}{\omega_{i}^{3}\gamma_{0}}\gamma_{3}\right)\int_{0}^{+\infty} |H_{i}(\omega)|^{2} \cdot \operatorname{Re}(S_{\vec{u}_{k}\vec{u}_{l}}) d\omega\right] - 2\left(\frac{C_{ji}}{\omega_{j}\gamma_{0}}\gamma_{1} + \frac{D_{ji}}{\omega_{j}^{3}\gamma_{0}}\gamma_{3}\right)\int_{0}^{+\infty} |H_{j}(\omega)|^{2} \cdot \operatorname{Re}(S_{\vec{u}_{k}\vec{u}_{l}}) d\omega\right\} \quad (10)$$

$$\blacksquare \Phi$$

其中

$$\gamma_{-2} = \int_{0}^{+\infty} \omega^{-2} |H_{i}(\omega)|^{2} \operatorname{Re}(S_{ii_{k}ii_{i}}(\omega)) d\omega \quad (11)$$

$$\int_{3}^{0} \omega^{3} |H_{i}(\omega)|^{2} \operatorname{Im}(S_{ii_{k}ii_{i}}(\omega)) d\omega \qquad (14)$$

(13)

 $\gamma_0 = \int_0^{+\infty} |H_i(\omega)|^2 \operatorname{Re}(S_{\tilde{u}_k \tilde{u}_i}(\omega)) \mathrm{d}\omega \qquad (12)$ 将式(10)代入式(3)中,得 $\rho_{ijkl}^{2} = \frac{\operatorname{Re}\left[\int_{0}^{+\infty} \rho_{kl}(\omega)H_{i}^{*}(\omega)H_{j}(\omega)S(\omega)d\omega\right]}{\sigma_{\tilde{s}_{kl}}^{p}\sigma_{\tilde{s}_{lj}}^{p}} =$ $\left[ABI\int_{0}^{+\infty}|H_{i}(\omega)|^{2}\cdot\operatorname{Re}(S_{u_{k}u_{i}})\mathrm{d}\omega+ABJ\int_{0}^{+\infty}|H_{j}(\omega)|^{2}\cdot\operatorname{Re}(S_{u_{k}u_{i}})\mathrm{d}\omega\right] \left[CDI\int_{0}^{+\infty}|H_{i}(\omega)|^{2}\cdot\operatorname{Re}(S_{\vec{u}_{k}\vec{u}_{l}})\mathrm{d}\omega-CDJ\int_{0}^{+\infty}|H_{j}(\omega)|^{2}\cdot\operatorname{Re}(S_{\vec{u}_{k}\vec{u}_{l}})\mathrm{d}\omega\right]$ (15)

$$\int_{0}^{\infty} |H_{i}(\omega)|^{2} S(\omega) d\omega \times \int_{0}^{\infty} |H_{j}(\omega)|^{2} S(\omega) d\omega$$

其中

$$ABI = \frac{1}{2} [A_{ij} - B_{ij} (1 - \omega_i^2 \gamma_{-2} / \gamma_0)]$$

$$ABJ = \frac{1}{2} [A_{ji} - B_{ji} (1 - \omega_j^2 \gamma_{-2} / \gamma_0)]$$

$$CDI = 2 \left(\frac{C_{ij}}{\omega_i \gamma_0} \gamma_1 + \frac{D_{ij}}{\omega_i^3 \gamma_0} \gamma_3 \right)$$

$$CDJ = 2 \left(\frac{C_{ji}}{\omega_j \gamma_0} \gamma_1 + \frac{D_{ji}}{\omega_j^3 \gamma_0} \gamma_3 \right)$$
(16)

对比式(3)和式(15)可以看出,虽然式(15)的表 达式比较复杂,但是积分次数明显减少:式(3)需要 积分 $i \times j \times k \times l$ 次;而式(15)只需要积分 $5 \times j \times k \times l$ 次,其中,*i、j*为结构的振型个数;*k、l*为结构的 支承点个数,且简化后的计算结果与简化前的完全 相同,都为精确解。对于振型密集的大跨空间结构, 抗震计算中参振振型个数一般取 i = 20~300, 可见 两种算法在计算量上的巨大差别。下面本文将通过 算例具体分析简化前和简化后的计算效率和精度。

算例分析 3

算例 1. 工程实例 1——AMECO 维修机库^[9] AMECO 大跨度维修机库的计算条件取为 II 类 场地,8度设防,可得 ω_g = 25.13rad/s , ξ_g = 0.80 , $S_0 = 173.36 \text{ cm}^2 / \text{s}^2$, $\omega_r = 8\pi \text{rad/s}$ 。 视波速 $v_{app} =$ 50m/s,采用的地震波为^[10]

$$S_{\mu_s}(\omega) = \frac{1 + 4\xi_g^2 (\omega/\omega_g)^2}{[1 - (\omega/\omega_g)^2]^2 + 4\xi_g^2 (\omega/\omega_g)^2} \cdot \frac{S_0}{1 + \omega^2/\omega_r^2}$$
取前 90 阶振型进行计算,结构的前 30 阶振型的自振圆频率列于表 1。结构支座分布图见图 1,其中,
各支座的坐标分别为:1(0,0)、2(153,0)、3(0,18)、

4(0,36)、5(0,54)、6(0,72)、7(0,90)、8(21,90)、9(57,90)、 10(75,90)、11(93,90)、12(129,90)、13(153,90)。 用两种方法得到 ρ_{ijkl} 计算结果及所用时间列于

表 2 和表 3。 ρ_{ijkl} 下标的含义:振型 *i* , 振型 *j* ; 支

座 k, 支座 l, 例如表 2 中, ρ₃₄₁₁为: 振型 *i*=3, 振 型 *j*=4; 支座 *k*=1,支座 *l*=1。表 3 中, *t*1 为积分 *i*×*j* × *k*×*l*次即未简化方法所用的时间, *t*2 为积分 5×*j* × *k*×*l*次即简化方法所用的时间。

图 1 AMECO 维修机库机库支座布置图

Fig.1 The arrangement of supports of AMECO hangar

表1 前30阶自振频率

Table 1 The first 30 natural frequencies

振型阶号	1	2	3	4	5	6	7	8	9	10
ω_i /(rad/s)	6.74	7.92	8.58	9.96	10.97	11.21	11.50	14.61	15.48	16.06
振型阶号	11	12	13	14	15	16	17	18	19	20
ω_i /(rad/s)	16.99	18.49	19.17	20.98	21.61	22.76	23.20	23.79	24.42	25.08
振型阶号	21	22	23	24	25	26	27	28	29	30
ω_i /(rad/s)	25.42	25.87	26.61	27.21	27.47	28.20	29.28	29.63	30.32	30.47

表 2 相关系数 ρ_{ijkl} 简化前后的比较

Table 2 Comparisons between fore-and-aft simplified ρ_{iikl}

	ijkl	3411	3412	3413	3414	3415	3416	3417	3418
	简化前	0.145	0.081	0.127	0.112	0.099	0.088	0.078	0.144
	简化后	0.145	0.081	0.127	0.112	0.099	0.088	0.078	0.144
	ijkl	1515	1525	1535	1545	1555	1565	1575	1585
	简化前	0.059	0.034	0.069	0.081	0.096	0.081	0.069	0.120
_	简化后	0.059	0.034	0.069	0.081	0.096	0.081	0.069	0.120
	ijkl	2111	2112	2113	2114	2115	2116	2117	2118
	简化前	0.166	0.093	0.147	0.130	0.116	0.103	0.093	0.001
_	简化后	0.166	0.093	0.147	0.130	0.116	0.103	0.093	0.001

算例 2. 工程实例 2--哈尔滨工业大学体育场 挑蓬^[9]

哈尔滨工业大学体育场挑蓬的场地类别及地

震波的选取同算例 1, 取前 60 阶振型进行计算,结构的前 30 阶振型的自振圆频率列于表 4。结构支座的分布图见图 2。

表 3 简化前和简化后的计算时间对比

Table 3 Comparison of the calculated time between

fore-and-aft simplification

i	j	k	l	t1/min	t2/min
14	14	13	13	2.5	0.5
20	20	13	13	5.1	0.7
30	30	13	13	11.5	1
60	60	13	13	46	2.2
90	90	13	13	103	3.2

用两种方法得到 ρ_{iikl} 计算结果及所用时间分别

列于表 5 和表 6。
$$\rho_{iikl}$$
及 $t1$ 、 $t2$ 的含义同算例 1。

图 2 哈尔滨工业大学体育场挑篷支座分布图

Fig. 2 The arrangement of the supports of the shed of palaestra in Harbin Institute of technology

表 4 前 30 阶自振频率

Table 4 The first 30 natural frequencies

振型阶号	1	2	3	4	5	6	7	8	9	10
ω_i /(rad/s)	14.23	14.80	15.78	16.90	19.59	22.74	26.32	30.09	31.93	34.79
振型阶号	11	12	13	14	15	16	17	18	19	20
ω_i /(rad/s)	38.32	40.20	41.72	42.92	43.03	44.52	44.67	47.14	48.15	49.78
振型阶号	21	22	23	24	25	26	27	28	29	30
$\omega_i/(rad/s)$	51.61	53.00	53.38	55.00	59.01	59.37	63.74	64.32	64.99	68.67

表 5 相关系数 ρ_{iikl} 简化前后的比较

Table5 Comparisons between fore-and-aft simplified ρ_{iikl}

ijkl	2311	2313	2314	2375	2324	1311	1313	1315
简化前	0.295	0.284	0.077	0.284	0.284	0.147	0.141	-0.261
简化后	0.295	0.284	0.077	0.284	0.284	0.147	0.141	-0.261
ijkl	1317	1319	1339	3168	3173	3179	3711	3719
简化前	-0.254	-0.353	-0.358	0.141	-0.261	-0.262	-0.0322	0.067
简化后	-0.254	-0.353	-0.358	0.141	-0.261	-0.262	-0.0322	0.067
ijkl	2111	3779	2113	3726	2115	3768	2117	2118
简化前	0.515	-0.095	0.498	0.094	0.204	0.0314	0.198	0.111
简化后	0.515	-0.095	0.498	0.094	0.204	0.0314	0.198	0.111

表 6 简化前和简化后的计算时间对比

Table 6 Comparison of the calculated time between

fore-and-aft simplification

i	j	k	l	<i>t</i> 1/h	<i>t</i> 2/h
14	14	86	86	1	0.33
20	20	86	86	2	0.47
30	30	86	86	4.5	0.71
60	60	86	86	18	1.5

通过以上两个算例可以看出,简化后计算时间 大大缩短,并且随着振型个数的增加效果越加明 显。考虑到大跨度空间结构自由度数庞大,振型密 集,参与振型数很多,如果采用未简化的计算公式 直接求解 ρ_{ijkl}^2 ,则计算量问题将会成为阻碍多点输 入反应谱推广应用的严重障碍,因此,本文的简化 非常必要。通过比较表 2 和表 5 可以看出,本文在 简化为 5 × j × k × l 次积分时为精确解。

4 结论

多点输入反应谱中相关系数的简化问题国内 外均未得到很好解决,严重阻碍了多点输入反应谱 的推广应用。本文从频响函数和积分特性两方面对 其进行了简化:首先将 H_i(ω)H_j(ω)^{*}写成实部与虚 部和的形式,然后根据积分的特性,将相关系数中 的积分次数由原来的 i×j×k×l次(i、j 为结构的振 型个数;k、l 为结构的支承点个数)减少到 5×j×k ×l次,计算时间大大缩短,且仍为精确解。

参考文献:

- Armen Der Kiureghian, Neuenhofer A. Response spectrum method for multi_support seismic excitations
 [J]. Earthquake Engineering and Structure Dynamics, 1992, 21: 713~740.
- [2] Heredia_Zavoni E, Vanmarcke E H. Seismic random_ vibration analysis of multi-support structure systems [J]. Journal of the Engineering Mechanics, ASCE, 1994, 120(5): 1107~1128.
- [3] 李建俊,林家浩,张文首.大跨度结构受多点随机地 震激励的响应[J].计算结构力学及其应用,1995,12(4): 445~452.

Li Jianjun, Lin Jiahao , Zhang Wenshou. Responses of long-span structures subjected to arbitrarily coherent multi-point stationary random seismic excitations [J]. Computational Structural Mechanics and Applications, 1995, 12(4): 445~452. (in Chinese)

- [4] Lin Jiahao. A fast CQC algorithm of PSD matrices for random seismic responses [J]. Computers & Structures, 1992, 44(3): 683~687.
- [5] Lin J H, Williams F W, Zhang W S. A new approach to multi-excitation stochastic seismic responses [J]. Micro. Computers in Civil Engineering, 1993, 8(4): 283~290.
- [6] Chin-Hsiung Loh, Bao-Ding Ku. An efficient analysis of structural response for multiple-support seismic excitations [J]. Engeering Structure, 1995, 17(1): 15~26.
- [7] 孙建梅, 叶继红, 程文瀼. 多点输入反应谱方法的简化
 [J]. 东南大学学报, 2003, 33(5): 647~651.
 Sun Jianmei, Ye Jihong, Cheng Wenrang. Simplification of the multi-support response spectrum method [J].

Journal of Southeast University, 2003, 33(5): 647~651. (in Chinese)

- [8] 孙建梅. 多点输入下大跨空间结构抗震性能和分析方法的研究[D]. 南京:东南大学土木工程学院,2005. Sun Jianmei. Research on seismic behavior and analysis method of long span space structures under multiple support excitations [D]. Nanjing: Department of Civil Engineering, Southeast University, 2005. (in Chinese)
- [9] 梁嘉庆. 大跨空间结构在非一致输入下的弹性响应分 析[D]. 南京: 东南大学土木工程学院, 2004.

附录:

式(8)、式(9)中,参数和的表达式为

$$A_{ij} = \frac{1}{E_{ij}} \{ 8q\xi_i(\xi_j + \xi_i q) [(1-q^2)^2 - 4q(\xi_i - \xi_j q)(\xi_j - \xi_i q)] \}$$

$$B_{ij} = \frac{1}{E_{ij}} \{ 2(1-q^2) [4q(\xi_i - \xi_j q)(\xi_j - \xi_i q) - (1-q^2)^2] \}$$
式中:

$$E_{ij} = 8q^2 [(\xi_i^2 + \xi_j^2)(1-q^2)^2 - 2(\xi_j^2 - \xi_i^2 q^2)(\xi_i^2 - \xi_j^2 q^2)] + (1-q^2)^4$$

Liang Jiaqing. Study on elastic vibration of space structures under non-uniform excitations [D]. Nanjing: Department of Civil Engineering, Southeast University, 2004. (in Chinese)

[10] 叶继红. 网壳结构 TMD 振动控制理论[D]. 哈尔滨: 哈尔滨工业大学, 1998.
Ye Jihong. Theory of TMD vibration control of shell structure [D]. Harbin: Harbin Institute of Technology, 1998. (in Chinese)

$$C_{ij} = \frac{1}{Q_{ij}} \{q(\xi_j - \xi_i q) [\zeta_i (\zeta_i - \zeta_j q^2) - (1 - q^4)] - (\xi_i - \xi_j q) (\zeta_i - \zeta_j q^2) \}$$

$$D_{ij} = \frac{1}{Q_{ij}} [q(\xi_j - \xi_i q) (\zeta_i - \zeta_j q^2) + (\xi_i - \xi_j q) (q^4 - 1)]$$

$$\overrightarrow{rt} + :$$

$$\zeta_i = 2(2\xi_i^2 - 1)$$

$$O_{ii} = q^4 (\zeta_i^2 + \zeta_i^2) - \zeta_i \zeta_i q^2 (1 + q^4) + (1 - q^4)^2$$

(上接第113页)

 $q = \omega_i / \omega_i$

- [8] 扬振中.小型振动冲击式打桩机动力学性能研究[J]. 农业机械学报, 1999, 30(6): 36~40.
 Yang Zhenzhong. A study on the dynamics of a small vibration-impact pile driver [J]. Transactions of the Chinese Society for Agricultural Machinery. 1999, 30(6): 36~40(in Chinese)
- [9] 扬振中.小型振动冲击式打桩机冲击点优化及计算机 仿真[J]. 水利学报, 1999, 8: 72~76.
 Yang Zhenzhong. Optimization of impact position and simulation of small vibratory pile driver [J]. Journal of Hydraulic Engineering, 1999, 8: 72~76.(in Chinese)
- [10] Mejaard J P, Pater A D. Railway vechicle systems dynamics and chaotic vibrations [J]. International Journal of Non-Linear Mechanics, 1989, 24(1): 1~17.
- [11] Kahraman A, Singh R. Non-linear dynamics of a geared

rotor-bearing system with multiple clearance [J]. Journal of Sound and Vibration, 1991, 144(3): 469~506.

- [12] 罗冠炜,谢建华.双质体冲击振动成型机周期运动的 稳定性与全局分岔[J]. 工程力学,2004,21(1):118~124.
 Luo Guanwei, Xie Jianhua. Stability and bifurcations of periodic motions of a vibro-impact forming machinery with double masses [J]. Engineering Mechanics, 2004, 21(1):118~124。 (in Chinese)
- [13] 罗冠炜,谢建华.强共振情况下冲击成型机的亚谐与 Hopf 分岔[J]. 力学学报, 2003, 35(5): 592~598.
 Luo Guanwei, Xie Jianhua. Subharmonic and Hopf bifurcations of an impact- forming machinery in a strong resonance case [J]. Acta Mechanica Sinica, 2003, 35(5): 592~598. (in Chinese)