Citation: | FU Bo, TONG Gen-shu. DUCTILITY FACTORS OF I-SECTION AND SECTION CLASSIFICATION FOR ASEISMIC DESIGN[J]. Engineering Mechanics, 2014, 31(6): 173-182,189. DOI: 10.6052/j.issn.1000-4750.2012.12.1013 |
[1] |
EN1993-1-1:2006, Eurocode 3: Design of steel structures Part 1-5: Plated structural elements[S]. Brussels, Belgium: European Communities for Standardization, Europe, 2006.
|
[2] |
Beg D, Hladnik L. Slenderness limit of class 3 I cross-sections made of high strength steel[J]. Journal of Constructional Steel Research, 1996, 38(3): 201―217.
|
[3] |
D’Aniello Mario, Landolfo Raffaele, Piluso Vincenzo, Rizzano Gianvittorio. Ultimate behavior of steel beams under non-uniform bending[J]. Journal of Constructional Steel Research, 2012, 78(7): 144―158.
|
[4] |
Nakashima Masayoshi. Variation of ductility capacity of steel beam-columns[J]. Journal of Structural Engineering, 1994, 120(7): 1941―1960.
|
[5] |
Gioncu Victor, Petcu Dana. Available rotation capacity of wide-flange beams and beam-columns part 1. Theoretical approaches[J]. Journal of Constructional Steel Research, 1997, 43(1/2/3): 161―217.
|
[6] |
Gioncu Victor, Petcu Dana. Available rotation capacity of wide-flange beams and beam-columns part 2. Experimental and numerical tests[J]. Journal of Constructional Steel Research, 1997, 43(1/2/3): 219―244.
|
[7] |
Gioncu Victor, Mosoarca Marius, Anastasiadis Anthimos. Prediction of available rotation capacity and ductility of wide-flange beams Part 1: DUCTROT-M computer program[J]. Journal of Constructional Steel Research, 2011, 69(9): 8―19.
|
[8] |
Anastasiadis Anthimos, Mosoarca Marius, Gioncu Victor. Prediction of available rotation capacity and ductility of wide-flange beams Part 2: Applications[J]. Journal of Constructional Steel Research, 2011, 68(8): 176―191.
|
[9] |
Kato B. Rotation capacity of H-section members as determined by local buckling[J]. Journal of Constructional Steel Research, 1989, 13(2/3): 95―109.
|
[10] |
Kato B. Deformation capacity of steel structures[J]. Journal of Constructional Steel Research, 1990, 13: 33―94.
|
[11] |
AIJ2010, 鋼構造限界狀態設計指針·同解说[S]. 日本: 日本建築學會, 2010. AIJ2010, Recommendation for limit state design of steel structures[S]. Japan: Japan Architectural Institute, 2002. (in Japanese)
|
[12] |
童根树, 付波. 受压和受弯板延性系数和面向抗震设计的钢截面分类[J]. 工程力学, 2013, 30(3): 323―330. Tong Genshu, Fu Bo. Ductility factors of plates and section classification for seismic design[J]. Engineering Mechanics, 2013, 30(3): 323―330. (in Chinese)
|
[13] |
石永久, 王萌, 王元清. 结构钢材循环荷载下的本构模型研究[J]. 工程力学, 2012, 29(9): 92―98. Shi Yongjiu, Wang Meng, Wang Yuanqing. Study on constitutive model of structural steel under cyclic loading[J]. Engineering Mechanics, 2012, 29(9): 92―98. (in Chinese)
|
[14] |
Vayas Ioannis. Stability and ductility of steel elements[J]. Journal of Constructional Steel Research, 1997, 44(1/2): 23―50.
|
[15] |
Davids A J, Hancock G J. Compression tests of short welded I‐sections[J]. Journal of Structural Engineering, 1986, 112(5): 960―976.
|
[16] |
彭国之. 薄壁截面的局部稳定性研究[D]. 杭州: 浙江大学, 2012. Peng Guozhi. The research on local buckling of thin-walled section[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
|
[17] |
蔡志恒. 双周期标准化的弹塑性反应谱研究[D]. 杭州: 浙江大学, 2011. Cai Zhiheng. Inelastic spectra normalized by two characteristic periods[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
|