LING Zhi-bin, LIU Wei-qing, YANG Hui-feng, LU Wei-dong. STUDY ON BOND-SLIP LAW OF GLULAM CONNECTION WITH GLUED-IN REBAR WITH CONSIDERATION OF LOCATION FUNCTION[J]. Engineering Mechanics, 2016, 33(3): 95-103. DOI: 10.6052/j.issn.1000-4750.2014.07.0643
Citation: LING Zhi-bin, LIU Wei-qing, YANG Hui-feng, LU Wei-dong. STUDY ON BOND-SLIP LAW OF GLULAM CONNECTION WITH GLUED-IN REBAR WITH CONSIDERATION OF LOCATION FUNCTION[J]. Engineering Mechanics, 2016, 33(3): 95-103. DOI: 10.6052/j.issn.1000-4750.2014.07.0643

STUDY ON BOND-SLIP LAW OF GLULAM CONNECTION WITH GLUED-IN REBAR WITH CONSIDERATION OF LOCATION FUNCTION

More Information
  • Received Date: July 22, 2014
  • Revised Date: January 11, 2015
  • Glued-in rebar technology is a new type of timber connecting technology characterized by high load-carrying capacity, high stiffness, improved aesthetic appearance and good fire resistance, which has been successfully used in the construction of timber buildings and bridges. Glued-in rebar in timber is similar to the post-installed rebar in concrete, in which three types of materials and two interfaces were involved. Bond behavior between glued-in rebar and timber is an issue of bond among several mediums. For good structural performance, material properties of glued-in rebar timber connection should be guaranteed. Furthermore, good bond performance at different interfaces is required. In this paper, based on the tri-linear bond-slip model, the closed-form solutions of axial stress of glued-in rebar, interfacial bond stress and relative slip were obtained by theoretical derivation and were then compared with the experimental results. The results showed that theoretical values fit the experimental data well. Distribution of bond stress and relative slip along the anchorage length were analyzed using the strains of glued-in rebar and the relative slip at the loaded end recorded during the testing. Finally, the bond-slip relationship for glued-in rebar glulam connection related to location function was established.
  • [1]
    樊承谋, 王永维, 潘景龙. 木结构[M]. 北京:高等教育出版社, 2009:113-130. Fan Chengmou, Wang Yongwei, Pan Jinglong. Timber structures[M]. Beijing:Higher Education Press, 2009:113-130.(in Chinese)
    [2]
    刘长青, 余江滔, 陆洲导, 王孔藩. 高温下植筋黏结-滑移性能试验研究[J]. 同济大学学报(自然科学版), 2010, 38(11):1579-1585. Liu Changqing, Yu Jiangtao, Lu Zhoudao, Wang Kongfan. Experimental study on bond behavior of post-installed rebar at high temperature[J]. Jounal of Tongji University(Natural Science Edition), 2010, 38(11):1579-1585.(in Chinese)
    [3]
    Sena-Cruz J, Branco J, Jorge M, et al. Bond behavior between glulam and GFRP's by pullout tests[J]. Composites Part B:Engineering, 2012, 43(3):1045-1055.
    [4]
    王博, 白国良, 代慧娟, 吴淑海. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学, 2013, 30(10):54-64. Wang Bo, Bai Guoliang, Dai Huijuan, Wu Shuhai. Experimental and mechanical analysis of bond-slip performance between recycled concrete and rebar[J]. Engineering Mechanics, 2013, 30(10):54-64.(in Chinese)
    [5]
    López-González J C, Fernández-Gómez J, González-Valle E. Effect of adhesive thickness and concrete strength on FRP-concrete bonds[J]. Journal of Composites for Construction, 2012, 16(6):705-711.
    [6]
    Yeboah D, Taylor S, McPolin D, Gilfillan R. Pull-out behaviour of axially loaded Basalt Fibre Reinforced Polymer(BFRP) rods bonded perpendicular to the grain of glulam elements[J]. Construction and Building Materials, 2013, 38:962-969.
    [7]
    郑建岚, 庄金平. 自密实混凝土与钢筋的粘结性能试验研究[J]. 工程力学, 2013, 30(2):112-117. Zheng Jianlan, Zhuang Jinping. Experimental research on bond properties between self-compacting concrete and reinforcement[J]. Engineering Mechanics, 2013, 30(2):112-117.(in Chinese)
    [8]
    徐世烺, 王洪昌. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J]. 工程力学, 2008, 25(11):53-61. Xu Shilang, Wang Hongchang. Experimental study on bond-slip between ultra-high toughness cementitious composites and steel bar[J]. Engineering Mechanics, 2008, 25(11):53-61.(in Chinese)
    [9]
    Zhao Yuxi, Lin Hongwei, Wu Kang, Jin Weiliang. Bond behavior of normal/recycled concrete and corroded steel bars[J]. Construction and Building Materials, 2013, 48:348-359.
    [10]
    徐有邻. 变形钢筋-混凝土粘结锚固性能的试验研究[D]. 北京:清华大学, 1990. Xu Youlin. Experimental study of anchorage properties for deformed bars in concrete[D]. Beijing:Tsinghua University, 1990.(in Chinese)
    [11]
    金伟良, 赵羽习. 随不同位置变化的钢筋与混凝土的粘结本构关系[J]. 浙江大学学报(工学版), 2002, 36(1):1-6. Jin Weiliang, Zhao Yuxi. Study on the bond stress-slip relationship variation with the position[J]. Jounal of Zhejiang University(Engineering Edition), 2002, 36(1):1-6.(in Chinese)
    [12]
    凌志彬, 杨会峰, 刘伟庆, 陆伟东. 胶合木植筋黏结锚固性能试验研究[J]. 建筑结构学报, 2013, 34(9):132-141. Ling Zhibin, Yang Huifeng, LiuWeiqing, Lu Weidong. Experimental study on bond and anchorage behavior of glued-in rebar in glulam[J]. Journal of Building Structures, 2013, 34(9):132-141.(in Chinese)
    [13]
    Ling Zhibin, Yang Huifeng, Liu Weiqing, Lu Weidong, Zhou Ding, Wang Lu. Pull-out strength and bond behaviour of axially loaded rebar glued-in glulam[J]. Construction and Building Materials, 2014, 65:440-449.
    [14]
    Yuan Hong, Lu Xusheng, Hui David, Feo Luciano. Studies on FRP-concrete interface with hardening and softening bond-slip law[J]. Composite Structures, 2012, 94:3781-3792.
    [15]
    ASTM D5652-95, Standard test methods for bolted connections in wood and wood-base products[S]. Philadelphia:American Society for Testing and Materials, 2007.
    [16]
    洪小健, 张誉. 粘结滑移试验中的粘结应力的拟合方法[J]. 结构工程师, 2000, 15(3):44-48. Hong Xiaojian, Zhang Yu. The fitting method of the smooth bond stress in the bond-slip test[J]. Structural Engineers, 2000, 15(3):44-48.(in Chinese)
  • Related Articles

    [1]ZHU Jun-tao, ZHANG Kai, WANG Xin-ling, LI Ke. STUDY ON INTERFACIAL BOND-SLIP RELATIONSHIP BETWEEN HSSWM-ECC AND CONCRETE[J]. Engineering Mechanics, 2022, 39(9): 204-214. DOI: 10.6052/j.issn.1000-4750.2021.05.0399
    [2]BAI Liang, ZHANG Miao, YANG Lei, HU Shuai, BAO Zheng-fu. EXPERIMENTAL INVESTIGATION AND FINITE ELEMENT MODELING OF INTERFACE BOND-SLIP BEHAVIOR BETWEEN SHAPE STEEL AND ECC[J]. Engineering Mechanics, 2021, 38(3): 98-111. DOI: 10.6052/j.issn.1000-4750.2020.04.0265
    [3]A Si-ha, ZHOU Chang-dong, QIU Yi-kun, LIANG Li-can, ZHANG Yong. BOND-SLIP LAW BETWEEN TIMBER AND NEAR SURFACE MOUNTED REBAR CONSIDERING LOCATION FUNCTION[J]. Engineering Mechanics, 2019, 36(10): 134-143. DOI: 10.6052/j.issn.1000-4750.2018.10.0546
    [4]CHEN Jun, ZHANG Bai, YANG Ou, JIANG En-hao. BOND PERFORMANCE BETWEEN SLIGHTLY CORRODED STEEL BARS AND CONCRETE AFTER EXPOSED TO HIGH TEMPERATURES[J]. Engineering Mechanics, 2018, 35(10): 92-100. DOI: 10.6052/j.issn.1000-4750.2017.06.0491
    [5]YANG Hai-feng, DENG Zhi-heng, QIN Ying-hong. EXPERIMENTAL STUDY ON BOND-SLIP RELATIONSHIP BETWEEN CORRODED REBAR AND RECYCLED CONCRETE[J]. Engineering Mechanics, 2015, 32(10): 114-122. DOI: 10.6052/j.issn.1000-4750.2014.03.0242
    [6]JIANG De-wen, QIU Hong-xing. BOND-SLIP BASIC CONSTITUTIVE RELATION MODEL BETWEEN REBAR AND CONCRETE UNDER REPEATED LOADING[J]. Engineering Mechanics, 2012, 29(5): 93-100.
    [7]KANG Xi-liang, CHENG Yao-fang, TU Yun, XUE Jian-yang. EXPERIMENTAL STUDY AND NUMERICAL ANALYSIS OF BOND-SLIP PERFORMANCE FOR CONCRETE FILLED STEEL TUBE[J]. Engineering Mechanics, 2010, 27(9): 102-106.
    [8]KANG Xi-liang, CHEN Yao-fang, ZHANG Li, ZHAO Hong-tie. THEORETICAL ANALYSIS OF BOND-SLIP CONSTITUTIVE RALATIONSHIP FOR CFST[J]. Engineering Mechanics, 2009, 26(10): 74-078.
    [9]LI Jun-hua, XUE Jian-yang, WANG Xin-tang, ZHAO Hong-tie. EXPERIMENTAL STUDY ON BOND SLIP BEHAVIOR BETWEEN SHAPE STEEL AND CONCRETE IN SRC COLUMNS UNDER CYCLIC REVERSED LOADING[J]. Engineering Mechanics, 2009, 26(4): 98-104.
    [10]XU Shi-lang, WANG Hong-chang. EXPERIMENTAL STUDY ON BOND-SLIP BETWEEN ULTRA HIGH TOUGHNESS CEMENTITIOUS COMPOSITES AND STEEL BAR[J]. Engineering Mechanics, 2008, 25(11): 53-061.
  • Cited by

    Periodical cited type(10)

    1. 杜永峰,张天允,李虎. 套筒内锈蚀钢筋与灌浆料黏结性能试验研究. 湖南大学学报(自然科学版). 2022(03): 90-100 .
    2. 方李靖,屈文俊,张盛东. 自攻螺钉在胶合木中的拉拔破坏模型. 工程力学. 2022(06): 212-225 . 本站查看
    3. 阿斯哈,周长东,杨礼赣. 复合加固圆形短木柱轴心受压应力-应变关系. 工程力学. 2021(02): 168-178 . 本站查看
    4. 韩笑东,赵越,杨燕泽,阿斯哈,周长东. 复合加固方形木柱偏心受压性能试验. 哈尔滨工业大学学报. 2021(04): 195-200 .
    5. 阿斯哈,周长东,邱意坤,梁立灿,张泳. 木材表面嵌筋黏结锚固性能试验研究. 建筑结构学报. 2020(07): 182-190 .
    6. 崔兆彦,徐明,陈忠范,王飞. 重组竹钢夹板螺栓连接承载力试验研究. 工程力学. 2019(01): 96-103+118 . 本站查看
    7. 刘伟庆,杨会峰. 现代木结构研究进展. 建筑结构学报. 2019(02): 16-43 .
    8. 阿斯哈,周长东,邱意坤,梁立灿,张泳. 考虑位置函数的木材表面嵌筋粘结滑移本构关系. 工程力学. 2019(10): 134-143 . 本站查看
    9. 陈梦成,杨超,王琴,吴小飞. 钢筋混凝土黏结应力计算方法比较. 混凝土. 2019(11): 62-65 .
    10. 曹磊,陈伯望. 胶合木梁抗剪性能研究综述. 工程力学. 2018(06): 1-5+14 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (382) PDF downloads (191) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return