BAI Xing-lan, HUANG Wei-ping, XIE Yong-he, YANG Chao-fan. FATIGUE ANALYSIS OF STEEL CATENARY RISER AT TOUCHDOWN ZONE UNDER NONLINEAR RISER-SOIL INTERACTION[J]. Engineering Mechanics, 2016, 33(3): 248-256. DOI: 10.6052/j.issn.1000-4750.2014.08.0701
Citation: BAI Xing-lan, HUANG Wei-ping, XIE Yong-he, YANG Chao-fan. FATIGUE ANALYSIS OF STEEL CATENARY RISER AT TOUCHDOWN ZONE UNDER NONLINEAR RISER-SOIL INTERACTION[J]. Engineering Mechanics, 2016, 33(3): 248-256. DOI: 10.6052/j.issn.1000-4750.2014.08.0701

FATIGUE ANALYSIS OF STEEL CATENARY RISER AT TOUCHDOWN ZONE UNDER NONLINEAR RISER-SOIL INTERACTION

More Information
  • Received Date: August 14, 2014
  • Revised Date: April 24, 2015
  • Using the P-y curve to simulate the interaction behavior between SCR and soil, the paper studies the riser-soil interaction response and performs fatigue analysis of SCR at TDZ under cyclic motions. The sag-bend and flow-line of SCR are modeled by flexible beam with large curvature and elastic foundation beam. SCR involves complex nonlinear dynamic behaviors, especially at the Touchdown Zone(TDZ) where the riser starts to touch the seabed. It is difficult to numerically simulate the riser-soil interaction due to the assocaited uncertainty in seabed model. A FORTRAN programming code modeling the riser-soil interaction is introduced into CABLE3D, and then CABLE3D RSI is obtained. The riser-soil interaction response and the global dynamic analysis are performed using the developed program, and the structural fatigue assessment is carried out by S-N approach. Results indicate: 1) SCR has been perturbed by 10 regular sinusoidal cycles and the responses show a number of features such as suction force mobilization, gradual increasing penetration depth, and gradually reducing mobilization of soil resistance at maximum penetration. The nonlinear riser-soil model accords with the actual seabed properties compared with linear and rigid seabed; 2) The comparative analysis shows that some points between TDP and the maximum embedment point are the key locations where maximum fatigue damage occurs. Parameters such as shear strength, suction factor play a vital role for the dynamic riser-soil interaction and fatigue behavior at TDZ.
  • [1]
    Wang Kunpeng, Xue Hongxiang, Tang Wenyong, Guo Jinting. Fatigue analysis of steel catenary riser at the touch-down point based on linear hysteretic riser-soil interaction model[J]. Ocean Engineering, 2013, 68(8):102-111.
    [2]
    Bridge C, Willis N. Steel catenary risers-results and conclusions from large scale simulations of seabed interactions[C]. Proceedings International Conference on Deep Offshore Technology, 2002.
    [3]
    Bridge C, Howells H, Toy N, Parke G, Woods R. Full scale model tests of a steel catenary riser[C]. Proceedings International Conference on Fluid Structure Interaction, 2003, 36:107-116.
    [4]
    Bridge C, Laver K, Clukey E, Evans T. Steel catenary riser touchdown point vertical interaction models[C]. Proceedings Offshore Technology Conference, 2004, OTC16628.
    [5]
    Willis NRT, West PTJ. Interaction between deepwater catenary risers and a soft seabed:large scale sea trials[C]. Proceedings Offshore Technology Conference, 2001, OTC13113.
    [6]
    Hodder M S, Byrne B W. 3D experiments investigating the interaction of a model SCR with the seabed[J]. Applied Ocean Research, 2010, 32(2):146-157.
    [7]
    Aubeny C P, Biscontin G. Seafloor-riser interaction model[J]. International Journal of Geomechanics, 2009, 9(3):133-141.
    [8]
    You J H. Numerical model for steel catenary riser on seafloor support[D]. Houston:Texas A&M University, 2005.
    [9]
    Jiao Y. Non-linear load-deflection models for seabed interaction with steel catenary risers. Mater of science thesis in civil engineering[D]. Houston:Texas A & M University, 2007.
    [10]
    Aubeny C P, Biscontin G, Zhang Jun. Seafloor interaction with Steel Catenary Risers[R]. Texas:Texas A & M University, 2006.
    [11]
    Nakhaee A, Zhang Jun. Trenching effects on dynamic behavior of a steel catenary riser[J]. Ocean Engineering, 2010, 37(2):277-288.
    [12]
    王坤鹏, 薛鸿祥, 唐文勇. 基于海床吸力和刚度衰减模型的深海钢悬链线立管动力响应分析[J]. 上海交通大学学报, 2011, 45(4):585-589. Wang Kunpeng, Xue Hongxiang, Tang Wenyong. Dynamic response analysis of deepwater steel catenary riser based on the seabed suction and stiffness degradation model[J]. Journal of Shanghai Jiaotong University, 2011, 45(4):585-589.(in Chinese)
    [13]
    杜金新, Low Y M. 海洋立管-海床土体接触作用数值分析[J]. 工程地质计算机应用, 2008, 13(4):1-6. Du Jinxin, Low Y M. Numerical analysis of contact action between offshore riser and seabed[J]. Computer Application of Engineering Geology, 2008, 13(4):1-6.(in Chinese)
    [14]
    Randolph M, Quiggin P. Non-linear hysteretic seabed model for catenary pipeline contact[C]. Honolulu, Hawaii:Proceedings of the 28th International Conference on Off-shore Mechanics and Arctic Engineering, 2009:145-154.
    [15]
    Hodjat S. Response of steel catenary riser on hysteretic non-linear seabed[J]. Applied Ocean Research, 2014, 44(1):20-28.
    [16]
    Elosta H, Huang S, Incecik A. Dynamic response of steel catenary riser using a seabed interaction under random loads[J]. Ocean Engineering, 2013, 69(9):34-43.
    [17]
    白兴兰. 基于惯性耦合的深水钢悬链线立管非线性分析方法研究[D]. 青岛:中国海洋大学, 2009. Bai Xinglan. Study on method for nonlinear analysis of deepwater SCR based on inertial coupling[D]. Qingdao:Ocean University of China, 2009.(in Chinese)
    [18]
    黄维平, 白兴兰. 深水钢悬链线立管的大挠度柔性索模拟方法[J]. 工程力学, 2009, 26(11):228-231, 246. Huang Weiping, Bai Xinglan. The simulation of steel catenary risers in deepwater with flexible cable model[J]. Engineering Mechanics, 2009, 26(11):228-231, 246.(in Chinese)
    [19]
    黄维平, 孟庆飞, 白兴兰. 钢悬链式立管与海床相互作用模拟方法研究[J]. 工程力学, 2013, 30(2):14-18. Huang Weiping, Mheng Qingfei, Bai Xinglan. The simulation of the interaction between SCR and seabed[J]. Engineering Mechanics, 2013, 30(2):14-18.(in Chinese)
    [20]
    孟庆飞, 黄维平. 钢悬链线立管与海底相互作用弹性基础梁模拟方法研究[J]. 海洋工程, 2013, 31(4):74-78. Meng Qingfei, Huang Weiping. Simulation of SCR and seabed with elastic foundation beam model[J]. The Ocean Engineering, 2013, 31(4):74-78.(in Chinese)
    [21]
    Bai Xinglan, Huang Weiping, Murilo Augusto Vaz, Yang Chaofan. Riser-soil interaction model effects on the dynamic behavior of a steel catenary riser[J]. Marine Structures, 2015, 41(4):53-76.
  • Related Articles

    [1]QIN Guo-hua, GUO Yi-xiang, WANG Hua-min, HOU Yuan-jun, LOU Wei-da. MULTIPLE OBJECTIVE STRUCTURAL OPTIMIZATION ON “MACHINING DEFORMATION - FATIGUE LIFE” OF AERONAUTICAL MONOLITHIC COMPONENTS[J]. Engineering Mechanics, 2021, 38(8): 222-236. DOI: 10.6052/j.issn.1000-4750.2020.07.0517
    [2]BAI Xing-lan, DUAN Meng-lan, LI Qiang. DYNAMIC RESPONSE OF A STEEL CATENARY RISER AT THE TOUCHDOWN POINT BASED ON INTEGRATED ANALYSIS[J]. Engineering Mechanics, 2014, 31(12): 249-256. DOI: 10.6052/j.issn.1000-4750.2013.12.1158
    [3]BAI Xing-lan, HUANG Wei-ping. STATIC ANALYSIS OF DEEPWATER STEEL CATENARY RISER USING NONLINEAR FINITE ELEMENT METHOD[J]. Engineering Mechanics, 2011, 28(4): 208-213.
    [4]BAI Xing-lan, HUANG Wei-ping, GAO Ruo-chen. EFFECT OF SEABED SOIL STIFFNESS ON DYNAMIC RESPONSE OF A STEEL CATENARY RISER AT TOUCHDOWN POINT[J]. Engineering Mechanics, 2011, 28(增刊I): 211-216.
    [5]QU Shu-ying, ZHANG Bao-feng, ZHANG Guo-dong, SHAO Yong-bo. EXPERIMENTAL STUDY OF STRESS CONCENTRATION FACTOR FOR COMPLETELY OVERLAPPED K-JOINTS[J]. Engineering Mechanics, 2009, 26(7): 83-088.
    [6]YUE Qian-jin, LIU Yuan, QU Yan. FATIGUE-LIFE ANALYSIS OF ICE-RESISTANT PLATFORMS[J]. Engineering Mechanics, 2007, 24(6): 159-164.
    [7]BIAN Yu-hong, TIAN Zhen-guo, BAI Xiang-zhong. NONLINEAR NUMERICAL ANALYSIS OF CURRENT-CARRYING CANTILEVER COLUMNAR SHELLS[J]. Engineering Mechanics, 2007, 24(4).
    [8]Yu Jiyang, Yang Tingqing, Yang Zhengwen. NONLINEAR ANALYSIS OF A STATICALLY INDETERMINATE ELASTICVISCOPLASTIC TRUSS[J]. Engineering Mechanics, 1992, 9(4): 70-76.
    [9]Xu Qilou, Ji Tonggeng. NONLINEAR ANALYSIS MODEL OF TWO-WAY FORCED ELEMENTS OF MASONRY[J]. Engineering Mechanics, 1992, 9(3): 73-80.
    [10]Liang Qizhi, Li Xun. A METHOD FOR THE NONLINEAR DYNAMIC TIME HISTORY ANALYSIS OF TRAME STRUCTURES[J]. Engineering Mechanics, 1990, 7(2): 62-70.
  • Cited by

    Periodical cited type(9)

    1. 白兴兰,陈嘉明. 钢悬链式立管管土耦合作用的吸力效应研究. 海洋工程. 2024(03): 11-20 .
    2. 陈嘉明,白兴兰,杨风艳. 浮体二阶运动下钢悬链式立管触地区动态响应分析. 海洋工程. 2022(06): 133-141 .
    3. 林志远,白兴兰,尤岩岩,魏东泽. 非线性管土耦合作用下钢悬链式立管触地区敏感性分析. 海洋工程. 2021(02): 20-31 .
    4. 尤岩岩,白兴兰,王孟义. 平台运动激励下钢悬链式立管触地点动态分析. 海洋工程. 2020(02): 83-91 .
    5. 王飞,李效民,马芳俊,郭海燕. 向量式有限元法在管土相互作用中的应用. 船舶力学. 2019(04): 467-475 .
    6. 姚兴隆,黄维平,常爽,刘娟,付雪鹏. 钢悬链式立管出平面涡激振动模态分析及试验验证. 振动与冲击. 2018(13): 78-84 .
    7. 陈振新,李捍平,李世强,蔡勇,彭维龙,陶诗洁,尹勋祥,刘臻. 考虑非线性管-土接触模型的钢悬链线立管触地区动态曲率分析. 海洋工程. 2018(06): 77-83 .
    8. 高云,王小梅,熊友明,邹丽,宗智. 考虑海底接触的钢悬链式立管触地点动力响应以及疲劳损伤分析. 计算力学学报. 2017(06): 704-711 .
    9. 白兴兰,陈侃,谢永和,李广年. 钢悬链线立管触地区管-土相互作用试验研究. 中国造船. 2016(02): 112-119 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (381) PDF downloads (188) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return