Citation: | BAI Xing-lan, HUANG Wei-ping, XIE Yong-he, YANG Chao-fan. FATIGUE ANALYSIS OF STEEL CATENARY RISER AT TOUCHDOWN ZONE UNDER NONLINEAR RISER-SOIL INTERACTION[J]. Engineering Mechanics, 2016, 33(3): 248-256. DOI: 10.6052/j.issn.1000-4750.2014.08.0701 |
[1] |
Wang Kunpeng, Xue Hongxiang, Tang Wenyong, Guo Jinting. Fatigue analysis of steel catenary riser at the touch-down point based on linear hysteretic riser-soil interaction model[J]. Ocean Engineering, 2013, 68(8):102-111.
|
[2] |
Bridge C, Willis N. Steel catenary risers-results and conclusions from large scale simulations of seabed interactions[C]. Proceedings International Conference on Deep Offshore Technology, 2002.
|
[3] |
Bridge C, Howells H, Toy N, Parke G, Woods R. Full scale model tests of a steel catenary riser[C]. Proceedings International Conference on Fluid Structure Interaction, 2003, 36:107-116.
|
[4] |
Bridge C, Laver K, Clukey E, Evans T. Steel catenary riser touchdown point vertical interaction models[C]. Proceedings Offshore Technology Conference, 2004, OTC16628.
|
[5] |
Willis NRT, West PTJ. Interaction between deepwater catenary risers and a soft seabed:large scale sea trials[C]. Proceedings Offshore Technology Conference, 2001, OTC13113.
|
[6] |
Hodder M S, Byrne B W. 3D experiments investigating the interaction of a model SCR with the seabed[J]. Applied Ocean Research, 2010, 32(2):146-157.
|
[7] |
Aubeny C P, Biscontin G. Seafloor-riser interaction model[J]. International Journal of Geomechanics, 2009, 9(3):133-141.
|
[8] |
You J H. Numerical model for steel catenary riser on seafloor support[D]. Houston:Texas A&M University, 2005.
|
[9] |
Jiao Y. Non-linear load-deflection models for seabed interaction with steel catenary risers. Mater of science thesis in civil engineering[D]. Houston:Texas A & M University, 2007.
|
[10] |
Aubeny C P, Biscontin G, Zhang Jun. Seafloor interaction with Steel Catenary Risers[R]. Texas:Texas A & M University, 2006.
|
[11] |
Nakhaee A, Zhang Jun. Trenching effects on dynamic behavior of a steel catenary riser[J]. Ocean Engineering, 2010, 37(2):277-288.
|
[12] |
王坤鹏, 薛鸿祥, 唐文勇. 基于海床吸力和刚度衰减模型的深海钢悬链线立管动力响应分析[J]. 上海交通大学学报, 2011, 45(4):585-589. Wang Kunpeng, Xue Hongxiang, Tang Wenyong. Dynamic response analysis of deepwater steel catenary riser based on the seabed suction and stiffness degradation model[J]. Journal of Shanghai Jiaotong University, 2011, 45(4):585-589.(in Chinese)
|
[13] |
杜金新, Low Y M. 海洋立管-海床土体接触作用数值分析[J]. 工程地质计算机应用, 2008, 13(4):1-6. Du Jinxin, Low Y M. Numerical analysis of contact action between offshore riser and seabed[J]. Computer Application of Engineering Geology, 2008, 13(4):1-6.(in Chinese)
|
[14] |
Randolph M, Quiggin P. Non-linear hysteretic seabed model for catenary pipeline contact[C]. Honolulu, Hawaii:Proceedings of the 28th International Conference on Off-shore Mechanics and Arctic Engineering, 2009:145-154.
|
[15] |
Hodjat S. Response of steel catenary riser on hysteretic non-linear seabed[J]. Applied Ocean Research, 2014, 44(1):20-28.
|
[16] |
Elosta H, Huang S, Incecik A. Dynamic response of steel catenary riser using a seabed interaction under random loads[J]. Ocean Engineering, 2013, 69(9):34-43.
|
[17] |
白兴兰. 基于惯性耦合的深水钢悬链线立管非线性分析方法研究[D]. 青岛:中国海洋大学, 2009. Bai Xinglan. Study on method for nonlinear analysis of deepwater SCR based on inertial coupling[D]. Qingdao:Ocean University of China, 2009.(in Chinese)
|
[18] |
黄维平, 白兴兰. 深水钢悬链线立管的大挠度柔性索模拟方法[J]. 工程力学, 2009, 26(11):228-231, 246. Huang Weiping, Bai Xinglan. The simulation of steel catenary risers in deepwater with flexible cable model[J]. Engineering Mechanics, 2009, 26(11):228-231, 246.(in Chinese)
|
[19] |
黄维平, 孟庆飞, 白兴兰. 钢悬链式立管与海床相互作用模拟方法研究[J]. 工程力学, 2013, 30(2):14-18. Huang Weiping, Mheng Qingfei, Bai Xinglan. The simulation of the interaction between SCR and seabed[J]. Engineering Mechanics, 2013, 30(2):14-18.(in Chinese)
|
[20] |
孟庆飞, 黄维平. 钢悬链线立管与海底相互作用弹性基础梁模拟方法研究[J]. 海洋工程, 2013, 31(4):74-78. Meng Qingfei, Huang Weiping. Simulation of SCR and seabed with elastic foundation beam model[J]. The Ocean Engineering, 2013, 31(4):74-78.(in Chinese)
|
[21] |
Bai Xinglan, Huang Weiping, Murilo Augusto Vaz, Yang Chaofan. Riser-soil interaction model effects on the dynamic behavior of a steel catenary riser[J]. Marine Structures, 2015, 41(4):53-76.
|
[1] | QIN Guo-hua, GUO Yi-xiang, WANG Hua-min, HOU Yuan-jun, LOU Wei-da. MULTIPLE OBJECTIVE STRUCTURAL OPTIMIZATION ON “MACHINING DEFORMATION - FATIGUE LIFE” OF AERONAUTICAL MONOLITHIC COMPONENTS[J]. Engineering Mechanics, 2021, 38(8): 222-236. DOI: 10.6052/j.issn.1000-4750.2020.07.0517 |
[2] | BAI Xing-lan, DUAN Meng-lan, LI Qiang. DYNAMIC RESPONSE OF A STEEL CATENARY RISER AT THE TOUCHDOWN POINT BASED ON INTEGRATED ANALYSIS[J]. Engineering Mechanics, 2014, 31(12): 249-256. DOI: 10.6052/j.issn.1000-4750.2013.12.1158 |
[3] | BAI Xing-lan, HUANG Wei-ping. STATIC ANALYSIS OF DEEPWATER STEEL CATENARY RISER USING NONLINEAR FINITE ELEMENT METHOD[J]. Engineering Mechanics, 2011, 28(4): 208-213. |
[4] | BAI Xing-lan, HUANG Wei-ping, GAO Ruo-chen. EFFECT OF SEABED SOIL STIFFNESS ON DYNAMIC RESPONSE OF A STEEL CATENARY RISER AT TOUCHDOWN POINT[J]. Engineering Mechanics, 2011, 28(增刊I): 211-216. |
[5] | QU Shu-ying, ZHANG Bao-feng, ZHANG Guo-dong, SHAO Yong-bo. EXPERIMENTAL STUDY OF STRESS CONCENTRATION FACTOR FOR COMPLETELY OVERLAPPED K-JOINTS[J]. Engineering Mechanics, 2009, 26(7): 83-088. |
[6] | YUE Qian-jin, LIU Yuan, QU Yan. FATIGUE-LIFE ANALYSIS OF ICE-RESISTANT PLATFORMS[J]. Engineering Mechanics, 2007, 24(6): 159-164. |
[7] | BIAN Yu-hong, TIAN Zhen-guo, BAI Xiang-zhong. NONLINEAR NUMERICAL ANALYSIS OF CURRENT-CARRYING CANTILEVER COLUMNAR SHELLS[J]. Engineering Mechanics, 2007, 24(4). |
[8] | Yu Jiyang, Yang Tingqing, Yang Zhengwen. NONLINEAR ANALYSIS OF A STATICALLY INDETERMINATE ELASTICVISCOPLASTIC TRUSS[J]. Engineering Mechanics, 1992, 9(4): 70-76. |
[9] | Xu Qilou, Ji Tonggeng. NONLINEAR ANALYSIS MODEL OF TWO-WAY FORCED ELEMENTS OF MASONRY[J]. Engineering Mechanics, 1992, 9(3): 73-80. |
[10] | Liang Qizhi, Li Xun. A METHOD FOR THE NONLINEAR DYNAMIC TIME HISTORY ANALYSIS OF TRAME STRUCTURES[J]. Engineering Mechanics, 1990, 7(2): 62-70. |