Citation: | WANG Shu-he, ZHANG Ju-bing. EVALUATION OF MOMENT MAGNIFYING COEFFICIENTS OF RC STRUCTURES BASED ON THE SEISMIC RISK ASSESSMENT METHOD[J]. Engineering Mechanics, 2018, 35(3): 132-140. DOI: 10.6052/j.issn.1000-4750.2016.11.0865 |
[1] |
叶列平, 马千里, 缪志伟. 钢筋混凝土框架结构强柱弱梁设计方法的研究[J]. 工程力学, 2010, 27(12):102-113. Ye Lieping, Ma Qianli, Miao Zhiwei. Study on weak beam-strong column design method of RC frame structures[J]. Engineering Mechanics, 2010, 27(12):102-113. (in Chinese)
|
[2] |
张耀庭, 马超, 郭宗明, 杜晓菊, 刘昌芳. 不同弯矩增大系数钢筋混凝土框架结构地震易损性分析[J]. 建筑结构学报, 2014, 35(2):29-37. Zhang Yaoting, Ma Chao, Guo Zongming, Du Xiaoju, Liu Changfang. Seismic fragility analysis for RC frame structures with various moment magnifying coefficients[J]. Journal of Building Structures, 2014, 35(2):29-37. (in Chinese)
|
[3] |
杨红, 孙永炜, 张睿, 白少良. 基于梁铰机制的柱端弯矩增强措施研究[J]. 土木工程学报, 2014, 47(4):64-74. Yang Hong, Sun Yongwei, Zhang Rui, Bai Shaoliang. Study on the moment amplification measures of column ends based on the sideway mechanism[J]. China Civil Engineering Journal, 2014, 47(4):64-74. (in Chinese)
|
[4] |
蔡健, 周靖, 方小丹. 柱端弯矩增大系数取值对RC框架结构抗震性能影响的评估[J]. 土木工程学报, 2007, 40(1):6-14. Cai Jian, Zhou Jing, Fang Xiaodan. Evaluation of influences of various moment magnifying coefficients at column ends of RC frames on seismic performance[J]. China Civil Engineering Journal, 2007, 40(1):6-14. (in Chinese)
|
[5] |
FEMA. FEMA P-58:Seismic performance assessment of buildings volume 1-methodology[R]. Washington D C:Federal Emergency Management Agency:2012.
|
[6] |
曾翔, 刘诗璇, 许镇, 等. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊):113-118. Zeng Xiang, Liu Shixuan, Xu Zhen, et al. Earthquake loss prediction for campus buildings based on FEMA-P58 method:A case study[J]. Engineering Mechanics, 2016, 33(Suppl):113-118. (in Chinese)
|
[7] |
于晓辉, 吕大刚. HAZUS相容的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2016, 33(3):152-160. Yu Xiaohui, Lü Dagang. HAZUS compatible seismic fragility analysis for RC frame structures[J]. Engineering Mechanics, 2016, 33(3):152-160. (in Chinese)
|
[8] |
罗文文, 李英民, 韩军. 基于全概率PBEE方法的RC框架结构地震损失分析[J]. 工程力学, 2016, 33(9):186-194. Luo Wenwen, Li Yingmin, Han Jun. Earthquake loss estimation for RC frames based on PEER-PBEE methodology[J]. Engineering Mechanics, 2016, 33(9):186-194. (in Chinese)
|
[9] |
Dimopoulos A I, Tzimas A S, Karavasilis T L, et al. Probabilistic economic seismic loss estimation in steel buildings using post-tensioned moment-resisting frames and viscous dampers[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(11):1725-1741.
|
[10] |
Mehrdad S, Mehdi B, Mehran S, Afshin M. Assessment of seismic risks in code conforming reinforced concrete frames[J]. Engineering Structures, 2015, 98:14-28.
|
[11] |
马宏旺, 吕西林, 陈晓宝. 建筑结构地震直接经济损失估计方法[J]. 土木工程学报, 2005, 38(3):38-43. Ma Hongwang, Lü Xilin, Chen Xiaobao. An estimation method for the direct losses of earthquake-induced building damages[J]. China Civil Engineering Journal, 2005, 38(3):38-43. (in Chinese)
|
[12] |
羡丽娜, 何政. 不同CMR的RC框架结构地震损失分析[J]. 工程力学, 2014, 31(12):155-163. Xian Li'na, He Zheng. Earthquake loss analysis of RC frame structures with different collapse margin ratios[J]. Engineering Mechanics, 2014, 31(12):155-163. (in Chinese)
|
[13] |
李刚, 程耿东. 基于性能的结构抗震设计:理论、方法与应用[M]. 北京:科学出版社, 2004:2-131. Li Gang, Cheng Gengdong. Performance-based seismic design of structures:Theory, methods and applications[M]. Beijing:Science Press, 2004:2-131. (in Chinese)
|
[14] |
Applied Technology Council (ATC). Earthquake damaged evaluation data for California[R]. Rep. No. ATC-13, Applied Technology Council, Redwood City, CA, 1985.
|
[15] |
Mackie K. Fragility-based seismic decision making for highway overpass bridge[D]. Berkeley:University of California, Berkeley, 2005:1-337.
|
[16] |
吴巧云, 朱宏平, 樊剑. 基于性能的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2012, 29(9):117-124. Wu Qiaoyun, Zhu Hongping, Fan Jian. Performancebased seismic fragility analysis of RC frame structures[J]. Engineering Mechanics, 2012, 29(9):117-124. (in Chinese)
|
[17] |
National Institute of Building Science. HAZUS99 user's manual[R]. Washington D C:Federal Emergency Management Agency, 1999:199-208.
|
[18] |
Xie L, Ma Y. Studies on performance-based seismic design criterion[J]. Acta Seismologica Sinica, 2002, 24(2):200-209.
|
[19] |
Gao X. Probabilistic model and its statistical parameters for seismic load[J]. Earthquake Engineering & Engineering Vibration. 1985, 5(3):13-22.
|
[20] |
国家地震局. 中国地震烈度区划图[M]. 北京:地震出版社, 1991. China Earthquake Administration. Earthquake intensity zoning map of China[M]. Beijing:Seismological Press, 1991. (in Chinese)
|
[21] |
Fragiadakis M, Lagaros N D, Papadrakakis M. Performance-based multi-objective optimum design of steel structures considering life-cycle cost[J]. Structural & Multidisciplinary Optimization, 2006, 32(1):1-11.
|
[22] |
Wang G Y, Cheng G D, Shao Z M, et al. Optimal fortification intensity and reliability of anti-seismic structures[M]. Beijing:Science Press, 1999.
|
[23] |
FEMA. HAZUS-MH MR2 technical manual[R]. FEMA, Washington D C, 2006:43-46.
|
[24] |
GB50011-2010, 建筑结构抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
|
[25] |
Shome N. Probabilistic seismic demand analysis of nonlinear structures[D]. Stanford:Stanford University, 1999.
|
[26] |
Pacific Earthquake Engineering Research Center. PEER strong motion database[DB/OL]. http://peer.berkeley.edu/smcat/index.html.California:Berkley,2005.
|
[27] |
Zhi X D, Nie G B, Fan F, Shen S Z. Vulnerability and risk assessment of single-layer reticulated domes subjected to earthquakes[J]. Journal of Structural Engineering, 2012, 138(12):1505-1514.
|