JIANG Wei, LIU Gang. BAYESIAN FINITE ELEMENT MODEL UPDATING METHOD BASED ON MULTI-CHAIN DIFFERENTIAL EVOLUTION[J]. Engineering Mechanics, 2019, 36(6): 101-108. DOI: 10.6052/j.issn.1000-4750.2018.04.0229
Citation: JIANG Wei, LIU Gang. BAYESIAN FINITE ELEMENT MODEL UPDATING METHOD BASED ON MULTI-CHAIN DIFFERENTIAL EVOLUTION[J]. Engineering Mechanics, 2019, 36(6): 101-108. DOI: 10.6052/j.issn.1000-4750.2018.04.0229

BAYESIAN FINITE ELEMENT MODEL UPDATING METHOD BASED ON MULTI-CHAIN DIFFERENTIAL EVOLUTION

More Information
  • Received Date: April 09, 2018
  • Revised Date: March 23, 2019
  • To cope with the shortages of low sampling efficiency and difficult convergence of traditional Bayesian method under high-dimension parameters, a Bayesian based finite element model is proposed by the base of a multi-chain differential evolution algorithm. Based on the standard Markov chain Monte Carlo (MCMC) method, a differential evolution algorithm is introduced, and a random difference operation among multiple Markov chains is derived from the size and direction of an adaptive selection condition distribution to quickly approximate the target distribution. A subspace sampling algorithm which uses adaptive selection to select good parameter dimensions for sampling is introduced to improve sampling efficiency. Also, an anomaly Markov chain detection algorithm which detects and eliminates abnormities in Markov chains in the non-stationary period is introduced to improve the sampling efficiency in the stationary phase. The correction results of a simply-supported-beam model and a four-floor-frame-structure model show that the proposed method has a higher correction accuracy, better noise resistance, and better correction effects than that of DRAM algorithm under high order frequency and mode shapes, which provides a new way to improve the computational accuracy in uncertainty model correction.
  • [1]
    Mosavi A A, Sedarat H, O'Connor S M, et al. Calibrating a high-fidelity finite element model of a highway bridge using a multi-variable sensitivity-based optimization approach[J]. Structure and Infrastructure Engineering, 2014, 10(5):627-642.
    [2]
    Collins J D, Hart G C, Hasselman T K, et al. Statistical identification of structures[J]. AIAA Journal, 1974, 12(2):185-190.
    [3]
    Jiang C, Han X, Liu G R. Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(49):4791-4800.
    [4]
    Hanss M. Applied fuzzy arithmetic[M]. Berlin Heidelberg:Springer-Verlag, 2005:128.
    [5]
    Beck J L, Katafygiotis L S. Updating models and their uncertainties I:Bayesian statistical framework[J]. Journal of Engineering Mechanics, 1998, 124(4):455-461.
    [6]
    Katafygiotis L S, Beck J L. Updating models and their uncertainties Ⅱ:Model identify ability[J]. Journal of Engineering Mechanics, 1998, 124(4):463-467.
    [7]
    Beck J L, Au S K. Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation[J]. Journal of Engineering Mechanics-ASCE, 2002, 128(4):380-391.
    [8]
    易伟建, 周云, 李浩,等. 基于贝叶斯统计推断的框架结构损伤诊断研究[J]. 工程力学, 2009, 26(5):121-129. Yi Weijian, Zhou Yun, Li Hao, et al. Damage assessment research on frame structure based on Bayesian statistical inference[J]. Engineering Mechanics, 2009, 26(5):121-129. (in Chinese)
    [9]
    房长宇, 张耀庭. 基于参数不确定性的预应力混凝土梁模型修正[J]. 华中科技大学学报(自然科学版), 2011, 39(11):87-91. Fang Changyu, Zhang Yaoting. Model updating of prestressed concrete beams using parameters uncertainty[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(11):87-91. (in Chinese)
    [10]
    韩芳, 钟冬望, 汪君. 基于贝叶斯法的复杂有限元模型修正研究[J]. 振动与冲击, 2012, 31(1):39-43. Han Fang, Zhong Dongwang, Wang Jun. Complicated finite element model updating based on Bayesian method[J]. Journal of Vibration and Shock, 2012, 31(1):39-43. (in Chinese)
    [11]
    Ching J Y, Chen Y C. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics, 2007, 133(7):816-832.
    [12]
    Cheung S H, Beck J L. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters[J]. Journal of Engineering Mechanics, 2009, 135(4):243-255.
    [13]
    刘纲, 罗钧, 秦阳, 等. 基于改进MCMC方法的有限元模型修正研究[J]. 工程力学, 2016, 33(6):138-145. Liu Gang, Luo Jun, Qin Yang, et al. A finite element model updating method based on improved MCMC method[J]. Engineering Mechanics, 2016, 33(6):138-145. (in Chinese)
    [14]
    Wang F S, Li X C, Lu M Y. Adaptive Hamiltonian MCMC sampling for robust visual tracking[J]. Multimedia Tools and Applications, 2017, 76(11):13087-13106.
    [15]
    Agostinho N B, Machado K S, Werhli A V. Inference of regulatory networks with a convergence improved MCMC sampler[J]. BMC Bioinformatics, 2015, 306(16):1-10.
    [16]
    Kennedy D A, Dukic V, Dwyer G. Combining principal component analysis with parameter line-searches to improve the efficacy of Metropolis-Hastings MCMC[J]. Environmental and Ecological Statistics, 2015, 22(2):247-274.
    [17]
    Mengersen K L, Robert C P. ⅡD sampling using self-avoiding population Monte Carlo:The pinball sampler[J]. Bayesian Statistics, 2003, 7:277-292.
    [18]
    茆诗松, 程依明, 濮晓龙, 等. 概率论与数理统计教程[M]. 北京:高等教育出版社, 2011:107-108. Mao Shisong, Chen Yiming, Pu Xiaolong, et al. Probability and statistics[M]. Beijing:Higher Education Press, 2011:107-108. (in Chinese)
    [19]
    Gelman A, Rubin D B. Inference from iterative simulation using multiple sequences[J]. Statistical Science, 1992, 7(4):457-472.
    [20]
    Vrugt J A, ter Braak C J F, Diks C G H, et al. Accelerating markov chain monte carlo simulation by differential evolution with self-adaptive randomized subspace sampling[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3):273-290.
    [21]
    Kim G H, Park Y S. An improved updating parameter selection method and finite element model update using multiobjective optimisation technique[J]. Mechanical Systems and Signal Processing, 2014, 18(1):59-78.
  • Related Articles

    [1]LI Ning, ZHANG Xiao-hang. STRUCTURAL RELIABILITY ANALYSIS METHOD BASED ON KEY REGION-SAMPLING AND DEEP NEURAL NETWORK-SURROGATE MODEL[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0719
    [2]ZHANG Xiao-nan, WANG Hai-yun, LI Qiang. ENLIGHTENMENT OF TURKEY M7.8 EARTHQUAKE ON THE REVISION OF SEISMIC DESIGN RESPONSE SPECTRUM IN CHINA[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.05.0337
    [3]LIU Gang, LUO Jun, QIN Yang, ZHANG Jian-xin. A FINITE ELEMENT MODEL UPDATING METHOD BASED ON IMPROVED MCMC METHOD[J]. Engineering Mechanics, 2016, 33(6): 138-145. DOI: 10.6052/j.issn.1000-4750.2014.10.0887
    [4]CHEN Xiang-qian, DONG Cong, YAN Yang. Improved Adaptive Importance Sampling Algorithm[J]. Engineering Mechanics, 2012, 29(11): 123-128. DOI: 10.6052/j.issn.1000-4750.2011.04.0220
    [5]YANG Kai, YU Kai-ping, LIU Rong-he, WANG Ying-qi. TWO NEW FAST IDENTIFICATION ALGORITHMS OF TIME-VARYING MODAL PARAMETERS BASED ON SUBSPACE TRACKING[J]. Engineering Mechanics, 2012, 29(10): 294-300. DOI: 10.6052/j.issn.1000-4750.2011.01.0039
    [6]ZHANG Hong-liang, KONG Xian-ren, ZHANG Guo-wei. IDENTIFICATION OF STATISTICAL ENERGY ANALYSIS PARAMETERS USING SUBSPACE METHOD[J]. Engineering Mechanics, 2012, 29(1): 13-19.
    [7]LI Hui-na, SHI Zhi-yu. SUBSPACE-BASED PHYSICAL PARAMETER IDENTIFICATION OF TIME-VARYING SYSTEM USING RANDOM EXCITATION RESPONSE[J]. Engineering Mechanics, 2008, 25(9): 46-051.
    [8]YU Yong-sheng, LIN Jia-hao. MULTI-LEVEL-SUBSTRUCTURING-BASED SUBSPACE ITERATION IN THE EIGENVALUE EXTRACTION FOR VERY LARGE-SCALE STRUCTURES[J]. Engineering Mechanics, 2003, 20(6): 149-153,.
    [9]WU Ri-qiang, YU Kai-ping, ZOU Jing-xiang. AN IMPROVED SUBSPACE METHOD AND ITS APPLICATION TO PARAMETER IDENTIFICATION OF TIME-VARYING STRUCTURES[J]. Engineering Mechanics, 2002, 19(4): 67-70,8.
    [10]Zhang Kai, Lin Chunzhe. Note on the Initial Vector Selection in the Subspace Iteration Method[J]. Engineering Mechanics, 1985, 2(3): 39-44.
  • Cited by

    Periodical cited type(22)

    1. 郑俊浩,王达荣,管仲国,林楷奇. 基于开源程序的大跨桥梁模型更新. 工程力学. 2025(03): 181-190 . 本站查看
    2. 熊军. 围堰封底混凝土钢护筒应力应变分析及厚度设计方法研究. 工程技术研究. 2024(06): 180-182 .
    3. 秦世强,李宁,宋任贤. 基于Kriging模型的多次尝试差分进化贝叶斯有限元模型修正. 振动与冲击. 2024(09): 204-213 .
    4. 宋彦朋,陈辉,黄斌. 基于静位移和多指标的贝叶斯模型修正方法. 华中科技大学学报(自然科学版). 2024(09): 69-76+93 .
    5. 宋彦朋,陈辉,黄斌,吴志峰. 结合蜉蝣算法和响应面的结构静力损伤识别. 计算力学学报. 2024(04): 702-708 .
    6. 刘纲,谭帅帅,邹春蓉,陈奇. 多链MCMC有限元模型修正收敛判定方法研究. 湖南大学学报(自然科学版). 2024(11): 85-93 .
    7. 慕何青,庞振浩,王浩,苏成. 结构影响线识别:反问题可识别性分析与降维贝叶斯不确定性量化. 工程力学. 2023(01): 51-62 . 本站查看
    8. 王未寅,王佐才,辛宇,丁雅杰. 基于模块化贝叶斯推理的随机非线性模型修正. 振动与冲击. 2023(02): 79-88 .
    9. 夏子祺,马临原,单伽锃,吕西林. 基于计算机视觉的建筑外墙剥落和裂缝两阶段检测方法. 建筑结构学报. 2023(02): 217-226 .
    10. 刘建超. 基于模态参数的软基退洪闸有限元分析. 水利技术监督. 2023(02): 199-203 .
    11. 孙永朋,彭珍瑞,白钰. 基于Kriging模型和小波包能量谱的随机模型修正. 机械强度. 2023(02): 255-261 .
    12. 石韶文,旷国忠,田宇,黄斌. 基于贝叶斯抽样的混凝土梁结构静力随机模型修正方法. 建材世界. 2023(04): 82-86 .
    13. 邹云峰,付正亿,何旭辉,卢玄东,阳劲松,周帅. 基于经验模态分解和模型缩聚的动力响应重构方法研究. 工程力学. 2022(02): 67-75 . 本站查看
    14. 刘纲,陈奇,雷振博,熊军. 基于改进萤火虫算法的有限元模型修正. 工程力学. 2022(07): 1-9 . 本站查看
    15. 丁雅杰,王佐才,辛宇,戈壁,袁子青. 基于贝叶斯理论的非线性结构模型修正及其动力可靠度分析. 工程力学. 2022(12): 13-22+59 . 本站查看
    16. 范新亮,王彤. 基于ANSYS的有限元模型修正软件实现. 机械制造与自动化. 2021(01): 107-110 .
    17. 曹艳梅,李东伟,张玉玉,杨林. 基于贝叶斯理论及MCMC-MH算法推演地基土材料阻尼比的概率分布模型. 振动与冲击. 2021(08): 216-222+277 .
    18. 曹艳梅,李东伟,李喆. 地基土层剪切模量的随机分布及地面振动传递函数的区间估计. 岩石力学与工程学报. 2021(05): 1022-1031 .
    19. 李火坤,王刚,余杰,魏博文,黄伟,黄锦林. 基于模态参数及BAS-PSO优化算法的软基水闸有限元模型参数修正方法. 工程力学. 2021(09): 246-256 . 本站查看
    20. 刘纲,雷振博,杨微,李杨. 风机塔架PS-TMD被动控制装置机理分析及参数调谐优化研究. 工程力学. 2021(12): 137-146 . 本站查看
    21. 张雪萍,彭珍瑞,张亚峰. 基于Kriging模型和改进MCMC算法的随机有限元模型修正. 计算力学学报. 2021(06): 712-721 .
    22. 杨铭,王淦,陈科达. 基于贝叶斯原理的梁结构模型修正方法. 城市建筑. 2020(11): 97-98+101 .

    Other cited types(29)

Catalog

    Article Metrics

    Article views (609) PDF downloads (108) Cited by(51)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return