Citation: | WANG Yong-liang. SUPERCONVERGENT PATCH RECOVERY SOLUTIONS AND ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR THE VIBRATION MODES OF NON-UNIFORM AND VARIABLE CURVATURE BEAMS[J]. Engineering Mechanics, 2020, 37(12): 1-8. DOI: 10.6052/j.issn.1000-4750.2020.02.0065 |
[1] |
Seo J, Linzell D G. Horizontally curved steel bridge seismic vulnerability assessment [J]. Engineering Structures, 2012, 34: 21 − 32. doi: 10.1016/j.engstruct.2011.09.008
|
[2] |
Guo S, Li D, Wu J. Theoretical and experimental study of a piezoelectric flapping wing rotor for micro aerial vehicle [J]. Aerospace Science and Technology, 2012, 23(1): 429 − 438. doi: 10.1016/j.ast.2011.10.002
|
[3] |
Please C P, Mason D P, Khalique C M, et al. Fracturing of an Euler–Bernoulli beam in coal mine pillar extraction [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 132 − 138. doi: 10.1016/j.ijrmms.2013.08.001
|
[4] |
Hu W H, Thöns S, Rohrmann R G, Said S, Rücker W. Vibration-based structural health monitoring of a wind turbine system. Part I: Resonance phenomenon [J]. Engineering Structures, 2015, 89: 260 − 272. doi: 10.1016/j.engstruct.2014.12.034
|
[5] |
De Domenico D, Falsone G, Ricciardi G. Improved response-spectrum analysis of base-isolated buildings: A substructure-based response spectrum method [J]. Engineering Structures, 2018, 162: 198 − 212. doi: 10.1016/j.engstruct.2018.02.037
|
[6] |
Wang Y L, Ju Y, Zhuang Z, Li C F. Adaptive finite element analysis for damage detection of non–uniform Euler–Bernoulli beams with multiple cracks based on natural frequencies [J]. Engineering Computation, 2018, 35(3): 1203 − 1229.
|
[7] |
Chang K C, Kim C W. Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge [J]. Engineering Structures, 2016, 122: 156 − 173. doi: 10.1016/j.engstruct.2016.04.057
|
[8] |
Fan W, Qiao P. Vibration-based damage identification methods: A review and comparative study [J]. Structural Health Monitoring, 2011, 10(1): 83 − 111. doi: 10.1177/1475921710365419
|
[9] |
Yang Y B, Yang J P. State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles [J]. International Journal of Structural Stability and Dynamics, 2018, 18(2): 1850025. doi: 10.1142/S0219455418500256
|
[10] |
Chidamparam P, Leissa A W. Vibrations of planar curved beams, rings, and arches [J]. Applied Mechanics Reviews, 1993, 46(9): 467 − 483. doi: 10.1115/1.3120374
|
[11] |
Alshorbagy A E, Eltaher M A, Mahmoud F F. Free vibration characteristics of a functionally graded beam by finite element method [J]. Applied Mathematical Modelling, 2011, 35(1): 412 − 425. doi: 10.1016/j.apm.2010.07.006
|
[12] |
Villavicencio R, Soares C G. Numerical modelling of the boundary conditions on beams stuck transversely by a mass [J]. International Journal of Impact Engineering, 2011, 38(5): 384 − 396. doi: 10.1016/j.ijimpeng.2010.12.006
|
[13] |
Piovan M T, Domini S, Ramirez J M. In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams [J]. Composite Structures, 2012, 94(11): 3194 − 3206.
|
[14] |
Arndt M, Machado R D, Scremin A. An adaptive generalized finite element method applied to free vibration analysis of straight bars and trusses [J]. Journal of Sound and Vibration, 2010, 329(6): 659 − 672. doi: 10.1016/j.jsv.2009.09.036
|
[15] |
Arndt M, Machado R, Scremin A. Accurate assessment of natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by adaptive generalized finite element method [J]. Engineering Computations, 2016, 33(5): 1586 − 1609. doi: 10.1108/EC-05-2015-0116
|
[16] |
袁驷, 王永亮, 徐俊杰. 二维自由振动的有限元线法自适应分析新进展[J]. 工程力学, 2014, 31(1): 15 − 22.
Yuan Si, Wang Yongliang, Xu Junjie. New progress in self-adaptive FEMOL analysis of 2D free vibration problems [J]. Engineering Mechanics, 2014, 31(1): 15 − 22. (in Chinese)
|
[17] |
王永亮, 鞠杨, 陈佳亮, 等. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17 − 25, 36. doi: 10.6052/j.issn.1000-4750.2017.06.0421
Wang Yongliang, Ju Yang, Chen Jialiang, et al. Adaptive finite element-discrete element algorithm, software ELFEN and application in stimulated reservoir volume of shale [J]. Engineering Mechanics, 2018, 35(9): 17 − 25, 36. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0421
|
[18] |
Friedman Z, Kosmatka J B. An accurate two-node finite element for shear deformable curved beams [J]. International Journal for Numerical Methods in Engineering, 1998, 41: 473 − 498. doi: 10.1002/(SICI)1097-0207(19980215)41:3<473::AID-NME294>3.0.CO;2-Q
|
[19] |
Huang C S, Tseng Y P, Chang S H, Thwaites S. Out-of-plane dynamic analysis of beams with arbitrarily varying curvature and cross-section by dynamic stiffness matrix method [J]. International Journal of Solids and Structures, 2000, 37(3): 495 − 513. doi: 10.1016/S0020-7683(99)00017-7
|
[20] |
Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method: Its basis and fundamentals [M]. 7th ed. Oxford, UK: Elsevier (Singapore), Pte Ltd, 2015.
|
[21] |
Wiberg N E, Bausys R, Hager P. Adaptive h-version eigenfrequency analysis [J]. Computers and Structures, 1999, 71(5): 565 − 84. doi: 10.1016/S0045-7949(98)00235-1
|
[22] |
Wiberg N E, Bausys R, Hager P. Improved eigenfrequencies and eigenmodes in free vibration analysis [J]. Computers and Structures, 1999, 73(1/2/3/4/5): 79 − 89.
|
[23] |
Clough R W, Penzien J. Dynamics of structures [M]. 2nd ed. New York: McGraw-Hill, 1993.
|
[24] |
Zienkiewicz O C, Zhu J. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity [J]. International Journal for Numerical Methods in Engineering, 1992, 33(7): 1365 − 1382. doi: 10.1002/nme.1620330703
|
[25] |
Tseng Y P, Huang C S, Lin C J. Dynamic stiffness analysis for in-plane vibrations of arches with variable curvature [J]. Journal of Sound and Vibration, 1997, 207: 15 − 31. doi: 10.1006/jsvi.1997.1112
|
[26] |
赵雪健. 平面曲梁自由振动的动力刚度法研究 [D]. 清华大学, 2010.
Zhao Xuejian. Research on dynamic stiffness method for free vibration of planar curved beams [D]. Beijing: Tsinghua University, 2010. (in Chinese).
|
[27] |
叶康生, 赵雪健. 动力刚度法求解平面曲梁面外自由振动问题[J]. 工程力学, 2012, 29(3): 1 − 8.
Ye Kangsheng, Zhao Xuejian. Dynamic stiffness method for out-of-plane free vibration analysis of planar curved beam [J]. Engineering Mechanics, 2012, 29(3): 1 − 8. (in Chinese)
|
[28] |
Lee B K, Oh S J, Mo J M, Lee T E. Out-of-plane free vibrations of curved beams with variable curvature [J]. Journal of Sound and Vibration, 2008, 318(1/2): 227 − 246.
|
[29] |
Kang K, Bert C W, Striz A G. Vibration analysis of shear deformable circular arches by the differential quadrature method [J]. Journal of Sound and Vibration, 1995, 183(2): 353 − 360. doi: 10.1006/jsvi.1995.0258
|
[30] |
Howson W P, Jemah A K. Exact out-of-plane natural frequencies of curved Timoshenko beams [J]. Journal of Engineering Mechanics, 1999, 125(1): 19 − 25. doi: 10.1061/(ASCE)0733-9399(1999)125:1(19)
|
1. |
刘兴喜,姚媛,徐荣桥. 基于状态空间法的平面圆弧曲梁面外动力学分析. 工程力学. 2024(S1): 89-97 .
![]() | |
2. |
袁啸,鲍四元. 变截面曲梁面外自由振动的一种新型级数分析法. 噪声与振动控制. 2024(05): 27-32+81 .
![]() | |
3. |
徐亚飞,肖映雄,吴宇航. 基于Python-Abaqus的自适应网格重划分算法实现及其应用. 计算力学学报. 2023(05): 807-814 .
![]() | |
4. |
谢臻,黄钟民,陈思亚,彭林欣. 基于无网格法的Timoshenko曲梁动力分析. 固体力学学报. 2022(05): 603-613 .
![]() | |
5. |
李志远,黄丹,闫康昊. 基于近场动力学微分算子的变截面梁动力特性分析方法. 工程力学. 2022(12): 23-30 .
![]() | |
6. |
王永亮,王建辉,张磊. 含多裂纹损伤圆弧曲梁自由振动扰动的有限元网格自适应分析. 工程力学. 2021(10): 24-33 .
![]() |