WANG Yong-liang. SUPERCONVERGENT PATCH RECOVERY SOLUTIONS AND ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR THE VIBRATION MODES OF NON-UNIFORM AND VARIABLE CURVATURE BEAMS[J]. Engineering Mechanics, 2020, 37(12): 1-8. DOI: 10.6052/j.issn.1000-4750.2020.02.0065
Citation: WANG Yong-liang. SUPERCONVERGENT PATCH RECOVERY SOLUTIONS AND ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR THE VIBRATION MODES OF NON-UNIFORM AND VARIABLE CURVATURE BEAMS[J]. Engineering Mechanics, 2020, 37(12): 1-8. DOI: 10.6052/j.issn.1000-4750.2020.02.0065

SUPERCONVERGENT PATCH RECOVERY SOLUTIONS AND ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR THE VIBRATION MODES OF NON-UNIFORM AND VARIABLE CURVATURE BEAMS

More Information
  • Received Date: February 09, 2020
  • Revised Date: April 19, 2020
  • Available Online: June 01, 2020
  • It presents a superconvergent patch recovery method for the superconvergent solutions of modes in the finite element (FE) post-processing stage of non-uniform and variable curvature curved beams. An adaptive method for the in-plane and out-of-plane free vibration of curved beams with variable cross-section is also proposed. In the post-processing stage of the displacement-based finite element method, the superconvergent patch recovery method and the high-order shape function interpolation technique are introduced to obtain the superconvergent solution of mode (displacement). Using the superconvergent solution of mode to estimate the error of the FE solution of mode in the energy form under the current mesh, an adaptive mesh refinement is proposed by mesh subdivision to derive the optimized mesh and accurate FE solution to meet the preset error tolerance. Numerical examples show that the proposed algorithm is suitable for solving the continuous orders for frequencies and modes in the in-plane and out-of-plane free vibration of different kinds of curve shapes, boundary conditions, non-uniform cross-section, and variable curvature forms of the non-uniform curved beams. The computation procedure can provide accurate solutions. The analysis process is efficient and reliable.
  • [1]
    Seo J, Linzell D G. Horizontally curved steel bridge seismic vulnerability assessment [J]. Engineering Structures, 2012, 34: 21 − 32. doi: 10.1016/j.engstruct.2011.09.008
    [2]
    Guo S, Li D, Wu J. Theoretical and experimental study of a piezoelectric flapping wing rotor for micro aerial vehicle [J]. Aerospace Science and Technology, 2012, 23(1): 429 − 438. doi: 10.1016/j.ast.2011.10.002
    [3]
    Please C P, Mason D P, Khalique C M, et al. Fracturing of an Euler–Bernoulli beam in coal mine pillar extraction [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 132 − 138. doi: 10.1016/j.ijrmms.2013.08.001
    [4]
    Hu W H, Thöns S, Rohrmann R G, Said S, Rücker W. Vibration-based structural health monitoring of a wind turbine system. Part I: Resonance phenomenon [J]. Engineering Structures, 2015, 89: 260 − 272. doi: 10.1016/j.engstruct.2014.12.034
    [5]
    De Domenico D, Falsone G, Ricciardi G. Improved response-spectrum analysis of base-isolated buildings: A substructure-based response spectrum method [J]. Engineering Structures, 2018, 162: 198 − 212. doi: 10.1016/j.engstruct.2018.02.037
    [6]
    Wang Y L, Ju Y, Zhuang Z, Li C F. Adaptive finite element analysis for damage detection of non–uniform Euler–Bernoulli beams with multiple cracks based on natural frequencies [J]. Engineering Computation, 2018, 35(3): 1203 − 1229.
    [7]
    Chang K C, Kim C W. Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge [J]. Engineering Structures, 2016, 122: 156 − 173. doi: 10.1016/j.engstruct.2016.04.057
    [8]
    Fan W, Qiao P. Vibration-based damage identification methods: A review and comparative study [J]. Structural Health Monitoring, 2011, 10(1): 83 − 111. doi: 10.1177/1475921710365419
    [9]
    Yang Y B, Yang J P. State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles [J]. International Journal of Structural Stability and Dynamics, 2018, 18(2): 1850025. doi: 10.1142/S0219455418500256
    [10]
    Chidamparam P, Leissa A W. Vibrations of planar curved beams, rings, and arches [J]. Applied Mechanics Reviews, 1993, 46(9): 467 − 483. doi: 10.1115/1.3120374
    [11]
    Alshorbagy A E, Eltaher M A, Mahmoud F F. Free vibration characteristics of a functionally graded beam by finite element method [J]. Applied Mathematical Modelling, 2011, 35(1): 412 − 425. doi: 10.1016/j.apm.2010.07.006
    [12]
    Villavicencio R, Soares C G. Numerical modelling of the boundary conditions on beams stuck transversely by a mass [J]. International Journal of Impact Engineering, 2011, 38(5): 384 − 396. doi: 10.1016/j.ijimpeng.2010.12.006
    [13]
    Piovan M T, Domini S, Ramirez J M. In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams [J]. Composite Structures, 2012, 94(11): 3194 − 3206.
    [14]
    Arndt M, Machado R D, Scremin A. An adaptive generalized finite element method applied to free vibration analysis of straight bars and trusses [J]. Journal of Sound and Vibration, 2010, 329(6): 659 − 672. doi: 10.1016/j.jsv.2009.09.036
    [15]
    Arndt M, Machado R, Scremin A. Accurate assessment of natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by adaptive generalized finite element method [J]. Engineering Computations, 2016, 33(5): 1586 − 1609. doi: 10.1108/EC-05-2015-0116
    [16]
    袁驷, 王永亮, 徐俊杰. 二维自由振动的有限元线法自适应分析新进展[J]. 工程力学, 2014, 31(1): 15 − 22.

    Yuan Si, Wang Yongliang, Xu Junjie. New progress in self-adaptive FEMOL analysis of 2D free vibration problems [J]. Engineering Mechanics, 2014, 31(1): 15 − 22. (in Chinese)
    [17]
    王永亮, 鞠杨, 陈佳亮, 等. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17 − 25, 36. doi: 10.6052/j.issn.1000-4750.2017.06.0421

    Wang Yongliang, Ju Yang, Chen Jialiang, et al. Adaptive finite element-discrete element algorithm, software ELFEN and application in stimulated reservoir volume of shale [J]. Engineering Mechanics, 2018, 35(9): 17 − 25, 36. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0421
    [18]
    Friedman Z, Kosmatka J B. An accurate two-node finite element for shear deformable curved beams [J]. International Journal for Numerical Methods in Engineering, 1998, 41: 473 − 498. doi: 10.1002/(SICI)1097-0207(19980215)41:3<473::AID-NME294>3.0.CO;2-Q
    [19]
    Huang C S, Tseng Y P, Chang S H, Thwaites S. Out-of-plane dynamic analysis of beams with arbitrarily varying curvature and cross-section by dynamic stiffness matrix method [J]. International Journal of Solids and Structures, 2000, 37(3): 495 − 513. doi: 10.1016/S0020-7683(99)00017-7
    [20]
    Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method: Its basis and fundamentals [M]. 7th ed. Oxford, UK: Elsevier (Singapore), Pte Ltd, 2015.
    [21]
    Wiberg N E, Bausys R, Hager P. Adaptive h-version eigenfrequency analysis [J]. Computers and Structures, 1999, 71(5): 565 − 84. doi: 10.1016/S0045-7949(98)00235-1
    [22]
    Wiberg N E, Bausys R, Hager P. Improved eigenfrequencies and eigenmodes in free vibration analysis [J]. Computers and Structures, 1999, 73(1/2/3/4/5): 79 − 89.
    [23]
    Clough R W, Penzien J. Dynamics of structures [M]. 2nd ed. New York: McGraw-Hill, 1993.
    [24]
    Zienkiewicz O C, Zhu J. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity [J]. International Journal for Numerical Methods in Engineering, 1992, 33(7): 1365 − 1382. doi: 10.1002/nme.1620330703
    [25]
    Tseng Y P, Huang C S, Lin C J. Dynamic stiffness analysis for in-plane vibrations of arches with variable curvature [J]. Journal of Sound and Vibration, 1997, 207: 15 − 31. doi: 10.1006/jsvi.1997.1112
    [26]
    赵雪健. 平面曲梁自由振动的动力刚度法研究 [D]. 清华大学, 2010.

    Zhao Xuejian. Research on dynamic stiffness method for free vibration of planar curved beams [D]. Beijing: Tsinghua University, 2010. (in Chinese).
    [27]
    叶康生, 赵雪健. 动力刚度法求解平面曲梁面外自由振动问题[J]. 工程力学, 2012, 29(3): 1 − 8.

    Ye Kangsheng, Zhao Xuejian. Dynamic stiffness method for out-of-plane free vibration analysis of planar curved beam [J]. Engineering Mechanics, 2012, 29(3): 1 − 8. (in Chinese)
    [28]
    Lee B K, Oh S J, Mo J M, Lee T E. Out-of-plane free vibrations of curved beams with variable curvature [J]. Journal of Sound and Vibration, 2008, 318(1/2): 227 − 246.
    [29]
    Kang K, Bert C W, Striz A G. Vibration analysis of shear deformable circular arches by the differential quadrature method [J]. Journal of Sound and Vibration, 1995, 183(2): 353 − 360. doi: 10.1006/jsvi.1995.0258
    [30]
    Howson W P, Jemah A K. Exact out-of-plane natural frequencies of curved Timoshenko beams [J]. Journal of Engineering Mechanics, 1999, 125(1): 19 − 25. doi: 10.1061/(ASCE)0733-9399(1999)125:1(19)
  • Related Articles

    [1]XU Lei, CUI Shan-shan, JIANG Lei, REN Qing-wen. ADAPTIVE MACRO-MESO-SCALE CONCURRENT FINITE ELEMENT ANALYSIS APPROACH OF CONCRETE USING DUAL MESH[J]. Engineering Mechanics, 2022, 39(4): 197-208. DOI: 10.6052/j.issn.1000-4750.2021.08.0610
    [2]WANG Yong-liang, WANG Jian-hui, ZHANG Lei. ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR FREE VIBRATION DISTURBANCE OF CIRCULARLY CURVED BEAMS WITH MULTIPLE CRACKS[J]. Engineering Mechanics, 2021, 38(10): 24-33. DOI: 10.6052/j.issn.1000-4750.2020.10.0708
    [3]WANG Yong-liang. ADAPTIVE MESH REFINEMENT ANALYSIS OF FINITE ELEMENT METHOD FOR ELASTIC BUCKLING OF CRACKED CIRCULARLY CURVED BEAMS[J]. Engineering Mechanics, 2021, 38(2): 8-15, 35. DOI: 10.6052/j.issn.1000-4750.2020.03.0173
    [4]YE Kang-sheng, LIANG Tong. A p-TYPE SUPERCONVERGENT RECOVERY METHOD FOR FINITE ELEMENT ANALYSIS OF OUT-OF-PLANE FREE VIBRATIONS OF PLANAR CURVED BEAMS[J]. Engineering Mechanics, 2020, 37(10): 17-27. DOI: 10.6052/j.issn.1000-4750.2019.11.0694
    [5]SUN Hao-han, YUAN Si. PERFORMANCE OF THE ADAPTIVE FINITE ELEMENT METHOD BASED ON THE ELEMENT-ENERGY-PROJECTION TECHNIQUE[J]. Engineering Mechanics, 2019, 36(2): 17-25. DOI: 10.6052/j.issn.1000-4750.2018.10.0439
    [6]ZHONG Bo, YE Kang-sheng, YUAN Si. ONE DIMENSIONAL FINITE ELEMENT ADAPTIVE ANALYSIS BASED ON A p-TYPE SUPERCONVERGENT RECOVERY SCHEME[J]. Engineering Mechanics, 2016, 33(增刊): 23-28. DOI: 10.6052/j.issn.1000-4750.2015.05.S038
    [7]LIU Chun-mei, XIAO Ying-xiong, SHU Shi, ZHONG Liu-qiang. ADAPTIVE FINITE ELEMENT METHOD AND LOCAL MULTIGRID METHOD FOR ELASTICITY PROBLEMS[J]. Engineering Mechanics, 2012, 29(9): 60-67,91. DOI: 10.6052/j.issn.1000-4750.2010.12.0934
    [8]LIU Yao-ru, ZHOU Wei-yuan, YANG Qiang. PARALLEL 3-D FINITE ELEMENT ANALYSIS BASED ON EBE METHOD[J]. Engineering Mechanics, 2006, 23(3): 27-31.
    [9]Li Conglin. FINITE ELEMENT-ITERATIVE METHOD[J]. Engineering Mechanics, 1997, 14(3): 112-117.
    [10]Liang Li, Lin Yunmei. ADAPTIVE MESH REFINEMENT OF FINITE ELEMENT METHOD AND ITS APPLICATION[J]. Engineering Mechanics, 1995, 12(2): 109-118.
  • Cited by

    Periodical cited type(6)

    1. 刘兴喜,姚媛,徐荣桥. 基于状态空间法的平面圆弧曲梁面外动力学分析. 工程力学. 2024(S1): 89-97 . 本站查看
    2. 袁啸,鲍四元. 变截面曲梁面外自由振动的一种新型级数分析法. 噪声与振动控制. 2024(05): 27-32+81 .
    3. 徐亚飞,肖映雄,吴宇航. 基于Python-Abaqus的自适应网格重划分算法实现及其应用. 计算力学学报. 2023(05): 807-814 .
    4. 谢臻,黄钟民,陈思亚,彭林欣. 基于无网格法的Timoshenko曲梁动力分析. 固体力学学报. 2022(05): 603-613 .
    5. 李志远,黄丹,闫康昊. 基于近场动力学微分算子的变截面梁动力特性分析方法. 工程力学. 2022(12): 23-30 . 本站查看
    6. 王永亮,王建辉,张磊. 含多裂纹损伤圆弧曲梁自由振动扰动的有限元网格自适应分析. 工程力学. 2021(10): 24-33 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (835) PDF downloads (129) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return