Citation: | CHEN Zhi-xiong, ZHAO Hua, WANG Cheng-long, DING Xuan-ming, KONG Gang-qiang, GAO Xue-cheng. MODEL TESTS ON LATERAL BEARING BEHAVIOR OF SINGLE ENERGY PILE IN SAND[J]. Engineering Mechanics, 2024, 41(3): 114-123. DOI: 10.6052/j.issn.1000-4750.2022.04.0309 |
In order to explore the lateral bearing characteristic of single energy piles, the bearing behavior of energy piles subjected to lateral load in sand is studied. Based on model tests, the pile top displacement, the soil pressure in front of the pile, and the bending moment during cooling and heating of the energy pile subjected to lateral load are analyzed. The results show that cooling process will slightly increase the pile top lateral displacement by 0.48%D (D is the pile diameter). The heating process will also significantly increase the pile top lateral displacement, and the increment reaches 2.38%D. In the initial stage cooling and heating, the soil pressure in front of the pile will increase, and after the initial stage, the change of pressure is small with slow or no increment. The horizontal soil pressure increases generally after cooling and heating, and the pressure decrease is observed only at a few points. After cooling, the pile bending moment at the depth of 0%L ~ 40%L (L is the effective pile length) will increase, while the bending moment at the depth of 40%L ~ 100%L will have less change. During heating, the bending moment at the depth of 0%L ~ 60%L will increase significantly, and the bending moment at the depth of 0%L ~ 40%L has the most obvious increase. The maximum bending moments during heating and cooling are both produced at the depth of 20%L, and the increment reaches 9.93% and 10.32% respectively. Based on the cavity expansion theory, the theoretical solution of the bending moment is proposed. Compared with the experimental results, the calculated values are in good agreement with the measured values.
[1] |
BRANDL H. Energy foundations and other thermo-active ground structures [J]. Géotechnique, 2006, 56(2): 81 − 122.
|
[2] |
WU D, LIU H, KONG G, et al. Interactions of an energy pile with several traditional piles in a row [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(4): 06020002. doi: 10.1061/(ASCE)GT.1943-5606.0002224
|
[3] |
MORADSHAHI A, FAIZAL M, BOUAZZA A, et al. Cross-sectional thermo-mechanical responses of energy piles [J]. Computers and Geotechnics, 2021, 138: 104320. doi: 10.1016/j.compgeo.2021.104320
|
[4] |
FAIZAL M, BOUAZZA A, HABERFIELD C, et al. Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(10): 04018072. doi: 10.1061/(ASCE)GT.1943-5606.0001952
|
[5] |
FAIZAL M, BOUAZZA A, SINGH R M. An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behaviour of a full scale geothermal energy pile [J]. Geomechanics for Energy and the Environment, 2016, 8: 8 − 29. doi: 10.1016/j.gete.2016.08.001
|
[6] |
陆浩杰, 吴迪, 孔纲强, 等. 循环温度作用下饱和黏土中摩擦型桩变形特性研究[J]. 工程力学, 2020, 37(5): 156 − 165. doi: 10.6052/j.issn.1000-4750.2019.07.0353
LU Haojie, WU Di, KONG Gangqiang, et al. Displacement characteristics of friction piles embedded in saturated clay subjected to thermal cycles [J]. Engineering Mechanics, 2020, 37(5): 156 − 165. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0353
|
[7] |
WU D, LIU H L, KONG G Q, et al. Displacement response of an energy pile in saturated clay [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2018, 171(4): 285 − 294. doi: 10.1680/jgeen.17.00152
|
[8] |
LIU H L, WANG C L, KONG G Q, et al. Ultimate bearing capacity of energy piles in dry and saturated sand [J]. Acta Geotechnica, 2019, 14(3): 869 − 879. doi: 10.1007/s11440-018-0661-6
|
[9] |
王成龙, 刘汉龙, 孔纲强, 等. 不同刚度约束对能量桩应力和位移的影响研究[J]. 岩土力学, 2018, 39(11): 4261 − 4268. doi: 10.16285/j.rsm.2017.0352
WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Study on stress and displacement of energy pile influenced by pile tip stiffness [J]. Rock and Soil Mechanics, 2018, 39(11): 4261 − 4268. (in Chinese) doi: 10.16285/j.rsm.2017.0352
|
[10] |
王成龙, 刘汉龙, 孔纲强, 等. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1): 85 − 91. doi: 10.6052/j.issn.1000-4750.2015.05.0455
WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Model tests on thermal mechanical behavior of energy piles influenced with heat exchangers types [J]. Engineering Mechanics, 2017, 34(1): 85 − 91. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.0455
|
[11] |
NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of heating effects on energy pile performance in saturated sand [J]. Canadian Geotechnical Journal, 2015, 52(8): 1045 − 1057. doi: 10.1139/cgj-2014-0301
|
[12] |
ZHAO R, LEUNG A K, KNAPPETT J A. Thermally induced ratcheting of a thermo-active reinforced concrete pile in sand under sustained lateral load [J]. Géotechnique, 2022. doi: 10.1680/jgeot.21.00299.
|
[13] |
VITALI D, LEUNG A K, FENG S, et al. Centrifuge modelling of the use of discretely spaced energy pile row to reinforce unsaturated silt [J]. Géotechnique, 2022, 72(7): 618 − 631.
|
[14] |
HEIDARI B, GARAKANI A A, JOZANI S M, et al. Energy piles under lateral loading: Analytical and numerical investigations [J]. Renewable Energy, 2022, 182: 172 − 191. doi: 10.1016/j.renene.2021.09.125
|
[15] |
DUPRAY F, LI C, LALOUI L. Heat-exchanger piles for the de-icing of bridges [J]. Acta Geotechnica, 2014, 9(3): 413 − 423. doi: 10.1007/s11440-014-0307-2
|
[16] |
ZDRAVKOVIC L, TABORDA D M G, POTTS D M, et al. Numerical modelling of large diameter piles under lateral loading for offshore wind applications [C]// Proceedings of the 3rd International Symposium on Frontiers in Offshore Geotechnics. Oslo: CRC Press, 2015, 1: 759 − 764.
|
[17] |
KRAMER C A, GHASEMI-FARE O, BASU P. Laboratory thermal performance tests on a model heat exchanger pile in sand [J]. Geotechnical and Geological Engineering, 2015, 33(2): 253 − 271. doi: 10.1007/s10706-014-9786-z
|
[18] |
杨克己, 李启新, 王福元. 水平力作用下群桩性状的研究[J]. 岩土工程学报, 1990, 12(3): 42 − 52. doi: 10.3321/j.issn:1000-4548.1990.03.005
YANG Keji, LI Qixin, WANG Fuyuan. Study on behavior of pile groups under lateral load [J]. Chinese Journal of Geotechnical Engineering, 1990, 12(3): 42 − 52. (in Chinese) doi: 10.3321/j.issn:1000-4548.1990.03.005
|
[19] |
NG C W W, WANG S H, ZHOU C. Volume change behaviour of saturated sand under thermal cycles [J]. Géotechnique Letters, 2016, 6(2): 124 − 131.
|
[20] |
孙毅龙, 许成顺, 杜修力, 等. 海上风电大直径单桩的修正p-y曲线模型[J]. 工程力学, 2021, 38(4): 44 − 53. doi: 10.6052/j.issn.1000-4750.2020.01.0051
SUN Yilong, XU Chengshun, DU Xiuli, et al. A modified p-y curve model of large-monopiles of offshore wind power plants [J]. Engineering Mechanics, 2021, 38(4): 44 − 53. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0051
|
[21] |
黄申, 翟恩地, 许成顺, 等. 考虑附加抗力影响的单桩水平受力分析方法[J]. 工程力学, 2022, 39(6): 156 − 168. doi: 10.6052/j.issn.1000-4750.2021.03.0227
HUANG Shen, ZHAI Endi, XU Chengshun, et al. A method of analyzing laterally loaded monopiles considering the influence of additional resistance [J]. Engineering Mechanics, 2022, 39(6): 156 − 168. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0227
|
[22] |
张小玲, 赵景玖, 孙毅龙, 等. 基于圆孔扩张理论的桩基水平承载力计算方法[J]. 工程力学, 2021, 38(2): 232 − 241, 256. doi: 10.6052/j.issn.1000-4750.2020.04.0278
ZHANG Xiaoling, ZHAO Jingjiu, SUN Yilong, et al. An analysis method for the horizontal bearing capacity of pile foundation based on the cavity expansion theory [J]. Engineering Mechanics, 2021, 38(2): 232 − 241, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0278
|
[23] |
梅国雄, 宰金珉. 考虑变形的朗肯土压力模型[J]. 岩石力学与工程学报, 2001, 20(6): 851 − 854. doi: 10.3321/j.issn:1000-6915.2001.06.022
MEI Guoxiong, ZAI Jinmin. Rankine earth pressure model considering deformation [J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 851 − 854. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.06.022
|
[24] |
YAVARI N, TANG A M, PEREIRA J M, et al. Effect of temperature on the shear strength of soils and the soil-structure interface [J]. Canadian Geotechnical Journal, 2016, 53(7): 1186 − 1194. doi: 10.1139/cgj-2015-0355
|
[25] |
MURAYAMA S. Effect of temperature on elasticity of clays [C]// Proceedings of an International Conference Held at Washington, D. C., January 16 1969 With the Support of the National Science Foundation. Washington: Highway Research Board, 1969: 194 − 203.
|
[26] |
LAGUROS J G. Effect of temperature on some engineering properties of clay soils [C]// Proceedings of an International Conference Held at Washington, D. C., January 16 1969 With the Support of the National Science Foundation. Washington: Highway Research Board, 1969: 186 − 193.
|
1. |
崔凌岳. 隧道超前长管棚力学响应特性研究与工程应用. 隧道建设(中英文). 2025(01): 120-131 .
![]() | |
2. |
周阳,来弘鹏,王兴广,孔军,李志磊,洪秋阳. 长锚杆/锚索改善深埋大跨度隧道初支结构受力试验研究. 岩土工程学报. 2024(04): 853-863 .
![]() | |
3. |
吴奎,邵珠山,李成龙,赵南南,储昭飞. 考虑施工中断影响的隧道力学响应解析模型研究. 工程力学. 2024(10): 169-179 .
![]() | |
4. |
刘昌,张顶立,孙振宇,张素磊,方黄城,李然. 初支混凝土硬化特性与围岩流变耦合作用机制. 工程力学. 2023(01): 63-75+86 .
![]() | |
5. |
张顶立,孙振宇,陶伟明. 隧道围岩大变形灾害特点与主动控制方法. 铁道标准设计. 2023(01): 1-9 .
![]() | |
6. |
孙振宇,皇甫楠琦,张顶立,李沐阳,王嘉琛. 大跨度隧道预应力锚固体系协同承载的压力拱效应. 铁道标准设计. 2023(01): 10-16+24 .
![]() | |
7. |
杨灵. 锚网喷注联合支护技术在硐室修复加固中的应用. 工程建设. 2023(02): 36-42 .
![]() | |
8. |
李立军,孙海滨,顾诚,喻德良. 基坑开挖对围岩锚杆应力的影响规律. 四川建材. 2023(11): 100-102 .
![]() |