HAN Zhen, LI Bo, ZHEN Wei, TIAN Yu-ji, LI Chen. CHARACTERISTICS OF WIND LOADS ACTING ON TALL BUILDINGS BASED ON THE MEASURED WIND FIELD IN URBAN CENTER[J]. Engineering Mechanics, 2024, 41(3): 124-134. DOI: 10.6052/j.issn.1000-4750.2022.04.0316
Citation: HAN Zhen, LI Bo, ZHEN Wei, TIAN Yu-ji, LI Chen. CHARACTERISTICS OF WIND LOADS ACTING ON TALL BUILDINGS BASED ON THE MEASURED WIND FIELD IN URBAN CENTER[J]. Engineering Mechanics, 2024, 41(3): 124-134. DOI: 10.6052/j.issn.1000-4750.2022.04.0316

CHARACTERISTICS OF WIND LOADS ACTING ON TALL BUILDINGS BASED ON THE MEASURED WIND FIELD IN URBAN CENTER

More Information
  • Received Date: April 09, 2022
  • Revised Date: July 16, 2022
  • Available Online: August 04, 2022
  • The wind profile is a main factor affecting wind load characteristics of tall buildings. To investigate characteristics of wind loads acting on tall buildings in urban central wind field, the measured wind speed data observed continuously from the Beijing Meteorological Tower during 2013-2017 was selected and the power-law was used to fit the measured wind profile based on the layered structure of the urban boundary layer. Wind loads of super-tall buildings with side ratios D/B=1, 2 and 4 in the measured wind field were obtained by carrying out a pressure test of rigid models in a wind tunnel and the results were compared with B and D wind fields in the code. The researches show that based on the layered structure, the power exponent of the measured wind field fitted by the power-law is 0.35. The mean wind velocity profile is similar to the D wind field, while the turbulence profile is larger than that of the D wind field. Compared with the wind load in B and D wind fields, the measured wind field has less effect on the mean wind load of super-tall buildings but a greater effect on the fluctuating wind load. Moreover, with the increase of the building side ratio, the fluctuating wind effect is enhanced significantly under the measured wind field. There is a strong correlation between the across-wind and torsional moment coefficients at the base, and correlation in the extreme values exists, especially for the building with D/B=4 at 90° wind direction, while two kinds of correlations are both enhanced in the measured wind field.

  • [1]
    SHU Z R, LI Q S, HE Y C, et al. Vertical wind profiles for typhoon, monsoon and thunderstorm winds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 190 − 199. doi: 10.1016/j.jweia.2017.06.004
    [2]
    HE J Y, LI Q S, CHAN P W, et al. Characteristics and vertical profiles of mean wind and turbulence for typhoon, monsoon, and thunderstorm winds [J]. Journal of Structural Engineering, 2021, 147(11): 04021188. doi: 10.1061/(ASCE)ST.1943-541X.0003156
    [3]
    李正农, 冯豪, 蒲鸥, 等. 基于六旋翼无人机搭载风速仪的边界层风剖面实测研究[J]. 工程力学, 2021, 38(8): 121 − 132. doi: 10.6052/j.issn.1000-4750.2020.08.0553

    LI Zhengnong, FENG Hao, PU Ou, et al. Boundary layer wind profile measurement based on a six-rotor UAV anemometer [J]. Engineering Mechanics, 2021, 38(8): 121 − 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0553
    [4]
    DAVENPORT A G. Rationale for determining design wind velocities [J]. Journal of the Structural Division , American Society of Civil Engineers, 1960, 86(5): 39 − 68.
    [5]
    KAREEM A, CERMAK J E. Pressure fluctuations on a square building model in boundary-layer flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1984, 16(1): 17 − 41. doi: 10.1016/0167-6105(84)90047-3
    [6]
    CHOI H, KANDA J. Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46/47: 507 − 516. doi: 10.1016/0167-6105(93)90318-I
    [7]
    KIM Y C, KANDA J. Characteristics of aerodynamic forces and pressures on square plan buildings with height variations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(8/9): 449 − 465.
    [8]
    KIM Y C, KANDA J. Wind pressures on tapered and set-back tall buildings [J]. Journal of Fluids and Structures, 2013, 39: 306 − 321. doi: 10.1016/j.jfluidstructs.2013.02.008
    [9]
    顾明, 唐意, 全涌. 矩形超高层建筑横风向脉动风力. Ⅰ: 基本特征[J]. 振动与冲击, 2010, 29(6): 42 − 45, 104, 234. doi: 10.3969/j.issn.1000-3835.2010.06.010

    GU Ming, TANG Yi, QUAN Yong. Fluctuating force of across- wind acting on rectangular super-tall buildings. part Ⅰ: basic characteristics [J]. Journal of Vibration and Shock, 2010, 29(6): 42 − 45, 104, 234. (in Chinese) doi: 10.3969/j.issn.1000-3835.2010.06.010
    [10]
    全涌, 张正维, 顾明, 等. 矩形截面高层建筑的横风向基底弯矩系数均方根值研究[J]. 土木工程学报, 2012, 45(4): 63 − 70. doi: 10.15951/j.tmgcxb.2012.04.015

    QUAN Yong, ZHANG Zhengwei, GU Ming, et al. Study of the RMS values of across-wind aerodynamic base moment coefficients of high-rise buildings with square or rectangular sections [J]. China Civil Engineering Journal, 2012, 45(4): 63 − 70. (in Chinese) doi: 10.15951/j.tmgcxb.2012.04.015
    [11]
    曹会兰, 全涌, 顾明. 修角对方形超高层建筑横风向气动阻尼的影响[J]. 工程力学, 2013, 30(11): 87 − 93, 100. doi: 10.6052/j.issn.1000-4750.2012.07.0547

    CAO Huilan, QUAN Yong, GU Ming. Effect of corner-cut and tapering on across-wind aerodynamic damping of square high-rise buildings [J]. Engineering Mechanics, 2013, 30(11): 87 − 93, 100. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.07.0547
    [12]
    李波, 杨庆山, 田玉基, 等. 锥形超高层建筑脉动风荷载特性[J]. 建筑结构学报, 2010, 31(10): 8 − 16. doi: 10.14006/j.jzjgxb.2010.10.002

    LI Bo, YANG Qingshan, TIAN Yuji, et al. Characteristics of turbulent wind load of tapered super-tall building [J]. Journal of Building Structures, 2010, 31(10): 8 − 16. (in Chinese) doi: 10.14006/j.jzjgxb.2010.10.002
    [13]
    李波, 杨庆山, 田玉基, 等. 锥形超高层建筑横风向风荷载模型[J]. 应用基础与工程科学学报, 2014, 22(6): 1195 − 1203. doi: 10.16058/j.issn.1005-0930.2014.06.016

    LI Bo, YANG Qingshan, TIAN Yuji, et al. Mathematic model of across-wind load on tapered supper-tall building [J]. Journal of Basic Science and Engineering, 2014, 22(6): 1195 − 1203. (in Chinese) doi: 10.16058/j.issn.1005-0930.2014.06.016
    [14]
    刘阳, 刘辉志, 王雷. 北京城市下垫面大气边界层湍流输送垂直分布特征[J]. 中国科学:地球科学, 2017, 47(10): 1243 − 1256.

    LIU Yang, LIU Huizhi, WANG Lei. The vertical distribution characteristics of integral turbulence statistics in the atmospheric boundary layer over an urban area in Beijing [J]. Science China Earth Sciences, 2017, 47(10): 1243 − 1256. (in Chinese)
    [15]
    KATO N, OHKUMA T, KIM J R, et al. Full scale measurements of wind velocity in 2 urban areas using an ultrasonic anemometer [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1/2/3): 67 − 78.
    [16]
    DREW D R, BARLOW J F, LANE S E. Observations of wind speed profiles over Greater London, UK, using a Doppler lidar [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 121: 98 − 105. doi: 10.1016/j.jweia.2013.07.019
    [17]
    LI Q S, ZHI L H, HU F. Boundary layer wind structure from observations on a 325 m tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 818 − 832. doi: 10.1016/j.jweia.2010.08.001
    [18]
    田玉基, 杨庆山, 杨娜, 等. 北京气象塔湍流风速谱的统计模型[J]. 中国科学:技术科学, 2011, 41(11): 1460 − 1468. doi: 10.1360/ze2011-41-11-1460

    TIAN Yuji, YANG Qingshan, YANG Na, et al. Statistical spectrum model of wind velocity at Beijing Meteorological Tower [J]. Scientia Sinica (Technologica), 2011, 41(11): 1460 − 1468. (in Chinese) doi: 10.1360/ze2011-41-11-1460
    [19]
    ZHANG S, YANG Q S, SOLARI G, et al. Characteristics of thunderstorm outflows in Beijing urban area [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 195: 104011. doi: 10.1016/j.jweia.2019.104011
    [20]
    王京学, 杨庆山, 孙霖等. 基于2013年马甸桥北气象塔实测数据的北京城区地貌风速谱分析[J]. 工程力学, 2020, 37(2): 250 − 256. doi: 10.6052/j.issn.1000-4750.2019.04.0157

    WANG Jingxue, YANG Qingshan, SUN Lin, et al. Analysis of the wind speed spectrum in the urban area of Beijing based on the measured data of the Ma Dian Qiao Bei Meteorological Tower in 2013 [J]. Engineering Mechanics, 2020, 37(2): 250 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0157
    [21]
    LI B, LI C, YANG Q S, et al. Full-scale wind speed spectra of 5 Year time series in urban boundary layer observed on a 325m meteorological tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 218: 104791. doi: 10.1016/j.jweia.2021.104791
    [22]
    张鑫鑫, 李波, 张石, 等. 基于北京中心城区实测的城市边界层风场特性[J]. 建筑结构学报, 2022, 43(3): 109 − 117. doi: 10.14006/j.jzjgxb.2020.0432

    ZHANG Xinxin, LI Bo, ZHANG Shi, et al. Characteristics of wind field in urban boundary layer based on measured data in central Beijing [J]. Journal of Building Structures, 2022, 43(3): 109 − 117. (in Chinese) doi: 10.14006/j.jzjgxb.2020.0432
    [23]
    MIAO S G, DOU J X, CHEN F, et al. Analysis of observations on the urban surface energy balance in Beijing [J]. Science China Earth Sciences, 2012, 55(11): 1881 − 1890. doi: 10.1007/s11430-012-4411-6
    [24]
    EMEIS S, BAUMANN-STANZER K, PIRINGER M, et al. Wind and turbulence in the urban boundary layer analysis from acoustic remote sensing data and fit to analytical relations [J]. Meteorologische Zeitschrift, 2007, 16(4): 393 − 406.
    [25]
    FORTUNIAK K, PAWLAK W, SIEDLECKI M. Integral turbulence statistics over a central European city Centre [J]. Boundary-Layer Meteorology, 2013, 146(2): 257 − 276.
    [26]
    PELLICCIONI A, MONTI P, LEUZZI G. Wind-speed profile and roughness sublayer depth modelling in urban boundary layers [J]. Boundary-Layer Meteorology, 2016, 160(2): 225 − 248. doi: 10.1007/s10546-016-0141-1
    [27]
    HALIOS C H, BARLOW J F. Observations of the morning development of the urban boundary layer over London, UK, taken during the ACTUAL project [J]. Boundary-Layer Meteorology, 2018, 166(3): 395 − 422. doi: 10.1007/s10546-017-0300-z
    [28]
    贾怀勤, 杜学孔 . 应用统计[M]. 第5版. 北京: 对外经济贸易大学出版社 , 2010.

    JIA Huaiqin, DU Xuekong. Applied statistics [M]. 5th ed. Beijing: University of International Business and Economics Press, 2010. (in Chinese)
    [29]
    GB 50009−2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.

    GB 50009−2012, Load code for the design of building structures[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [30]
    LI B, YANG Q S, SOLARI G, et al. Investigation of wind load on 1, 000 m-high super‐tall buildings based on HFFB tests [J]. Structural Control and Health Monitoring, 2018, 25(2): e2068.
    [31]
    SAATHOFF P J, MELBOURNE W H. Effects of free-stream turbulence on surface pressure fluctuations in a separation bubble [J]. Journal of Fluid Mechanics, 1997, 337: 1 − 24. doi: 10.1017/S0022112096004594
    [32]
    ZHANG Q S, LIU Y Z. Wall-pressure fluctuations of separated and reattaching flow over blunt plate with chord-to-thickness ratio c/d=9.0 [J]. Experimental Thermal and Fluid Science, 2012, 42: 125 − 135. doi: 10.1016/j.expthermflusci.2012.04.019
    [33]
    ZHANG Q S, LIU Y Z. Separated flow over blunt plates with different chord-to-thickness ratios: Unsteady behaviors and wall-pressure fluctuations [J]. Experimental Thermal and Fluid Science, 2017, 84: 199 − 216. doi: 10.1016/j.expthermflusci.2017.02.007
    [34]
    TAMURA Y, KIKUCHI H, HIBI K. Quasi-static wind load combinations for low- and middle-rise buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12/13/14/15): 1613 − 1625.
    [35]
    TAMURA Y, KIKUCHI H, HIBI K. Peak normal stresses and effects of wind direction on wind load combinations for medium-rise buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 1043 − 1057.
    [36]
    TAMURA Y, KIM Y C, KIKUCHI H, et al. Correlation and combination of wind force components and responses [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 125: 81 − 93. doi: 10.1016/j.jweia.2013.11.015
  • Related Articles

    [1]YANG Shuo-chen, WANG Qian-sen, LIU Qing-kuan, ZHENG Yun-fei, YANG Xiong-wei. THE INFLUENCE OF INTERFERENCE EFFECT ON EXTREME WIND PRESSURE OF HIGH-RISE BUILDINGS UNDER DIFFERENT WIND DIRECTIONS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.05.S004
    [2]CHAI Xiao-bing, LIU Qing-kuan, SUN Yi-fei, ZHENG Yi-xin. WIND TUNNEL TEST STUDY ON THE SHELTERING EFFECT OF BUTTERFLY-SHAPED WINDBREAK NET WITH 45% POROSITY[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.05.S028
    [3]LI Yu-hang, DENG Yang, LI Ai-qun, XU Tao. INVESTIGATION ON WIND PRESSURE AND SHAPE FACTOR OF HIGH-RISE ANCIENT CHINESE WOODEN PAGODA VIA WIND TUNNEL TEST[J]. Engineering Mechanics, 2021, 38(10): 64-73. DOI: 10.6052/j.issn.1000-4750.2020.09.0623
    [4]ZHENG Xiao-nan, CUI Hui-min, LIU Qing-kuan. STUDY ON SURFACE WIND PRESSURE AND PEDESTRIAN WIND ENVIRONMENT OF SUPER HIGH-RISE BUILDINGS[J]. Engineering Mechanics, 2021, 38(S): 223-227. DOI: 10.6052/j.issn.1000-4750.2020.05.S040
    [5]LIU Jian-han, MA Wen-yong. WIND TUNNEL TEST ON AERODYNAMIC CHARACTERISTICS OF A ROTATING CYLINDER[J]. Engineering Mechanics, 2021, 38(S): 89-92, 132. DOI: 10.6052/j.issn.1000-4750.2020.05.S016
    [6]SHAO Yuan-hang, CUI Hui-min, LIU Qing-kuan, ZHENG Yun-fei. EXPERIMENTAL RESEARCH ON WIND TUNEL PRESSURE MEASUREMENT OF A SUPER HIGH-RISE BUILDING[J]. Engineering Mechanics, 2021, 38(S): 26-30, 38. DOI: 10.6052/j.issn.1000-4750.2020.05.S005
    [7]AI Hui-lin, ZHOU Zhi-yong. RESEARCH ON WIND LOAD CHARACTERISTICS OF COMPLEX DECORATIVE STRIPS ON THE OUTER SURFACE OF HIGH-RISE BUILDING[J]. Engineering Mechanics, 2016, 33(8): 141-149. DOI: 10.6052/j.issn.1000-4750.2015.01.0034
    [8]LI Dan-yu, YANG Qing-shan, TIAN Yu-ji. A QUICK ZONING METHOD FOR WIND PRESSURE COEFFICIENTS BASED ON K-MEANS CLUSTERING[J]. Engineering Mechanics, 2014, 31(12): 164-172. DOI: 10.6052/j.issn.1000-4750.2013.11.1115
    [9]QUAN Yong, CHEN Bin, GU Ming, TAMURA Yukio. EFFECTS OF GEOMETRICAL PARAMETERS ON MOST UNFAVORABLE WIND PRESSURE COEFFICIENTS ON GABLE ROOFS OF LOW-RISE BUILDINGS[J]. Engineering Mechanics, 2010, 27(7): 142-147.
    [10]LIU Ji-sheng, CHEN Shui-fu. NUMERICAL SIMULATION AND TEST INVESTIGATION OF WIND PRESSURES ON ROOF OF JINGGANGSHAN AIRPORT BUILDING[J]. Engineering Mechanics, 2005, 22(4): 96-100.

Catalog

    Article Metrics

    Article views (309) PDF downloads (78) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return