GAO Yong-wu, WANG Dong-ming, CHEN Jing-yi. INFLUENCE OF PROBABILISTIC SEISMIC VULNERABILITY ANALYSIS ON GROUND MOTION DETERMINATION METHOD WITH CONSIDERING SITE EFFECT[J]. Engineering Mechanics, 2025, 42(4): 139-149. DOI: 10.6052/j.issn.1000-4750.2022.12.1078
Citation: GAO Yong-wu, WANG Dong-ming, CHEN Jing-yi. INFLUENCE OF PROBABILISTIC SEISMIC VULNERABILITY ANALYSIS ON GROUND MOTION DETERMINATION METHOD WITH CONSIDERING SITE EFFECT[J]. Engineering Mechanics, 2025, 42(4): 139-149. DOI: 10.6052/j.issn.1000-4750.2022.12.1078

INFLUENCE OF PROBABILISTIC SEISMIC VULNERABILITY ANALYSIS ON GROUND MOTION DETERMINATION METHOD WITH CONSIDERING SITE EFFECT

More Information
  • Received Date: December 14, 2022
  • Revised Date: March 26, 2023
  • Available Online: April 22, 2023
  • Based on the lack of epistemic of site effects when selecting ground motion in structural seismic vulnerability analysis, a ground motion determination method is proposed with a view towards considering the site effect. The method combines the amplitude modulation of bedrock ground motions and earthquake response analysis of soil layers. The standard input ground motion for seismic vulnerability analysis of structures is established upon this method. Meanwhile, three groups of ground motion input with 'unconsidered', incomplete consideration, and existing methods considering site effects are designed as comparisons. Three kinds of lumped mass simplified models of interlayer force-displacement restoring force relationship were used to analyze structural seismic vulnerability under different ground motion input conditions. Obtained is a comparative analysis for the relative difference ratios of the median mRR,D and logarithmic standard deviation βRR,D of the four limit states of the seismic fragility curves of the control group and the standard group considering the three structures. The research shows that the seismic vulnerability of structures with different site effect is different, and that the difference tends to increase with the increase of the limit state of seismic vulnerability. According to the analysis results, the epistemic uncertainty coefficient values considering the site effect in different degrees are developed by the interval estimation model of seismic vulnerability function. The method can provide a reference for considering site effect epistemic uncertainty coefficient correction in seismic vulnerability analysis.

  • [1]
    HASELTON C B. Assessing seismic collapse safety of modern reinforced concrete moment frame buildings [D]. Stanford: Stanford University, 2006.
    [2]
    WANG D, LI J. Physical random function model of ground motions for engineering purposes [J]. Science China Technological Sciences, 2011, 54(1): 175 − 182. doi: 10.1007/s11431-010-4201-3
    [3]
    KATSANOS E I, SEXTOS A G, MANOLIS G D. Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(4): 157 − 169. doi: 10.1016/j.soildyn.2009.10.005
    [4]
    BAKER J, CORNELL C A. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon [J]. Earthquake Engineering and Structural Dynamisc, 2005, 34(10): 1193 − 1217. doi: 10.1002/eqe.474
    [5]
    DHAKAL P R, MANDER B J, MASHIKO N. Identification of critical ground motions for seismic performance assessment of structures [J]. Earthquake Engineering and Structural Dynamics, 2006, 35(8): 989 − 1008. doi: 10.1002/eqe.568
    [6]
    RATHJE E M, KOTTKE A R, TRENT W L. Influence of input motion and site property variabilities on seismic site response analysis [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(4): 607 − 619. doi: 10.1061/(ASCE)GT.1943-5606.0000255
    [7]
    乔卓琦. 面向一致风险抗震设计的地震动记录选取研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    QIAO Zhuoqi. Study on selection of ground motion records for uniform risk seismic design [D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [8]
    GUZEL Y. Influence of input motion selection and soil variability on nonlinear ground response analyses [D]. Newcastle: Newcastle University, 2018.
    [9]
    LOPEZ-CABALLERO F, GELIS C, REGNIER J. Site response analysis including earthquake input ground motion and soil dynamic properties variability [C]// Proceedings of the Fifteenth World Conference on Earthquake Engineering. Lisbon: SPES, 2012: 23796 − 23805.
    [10]
    姬路遥. 考虑场地土效应及其不确定性的地震动记录选取研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    JI Luyao. Research on selection of ground motion records considering site soil effect and its uncertainty [D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [11]
    LI B, PANDY M D, DAI K S, et al. Effects of soil parameter variabilities on the estimation of ground-motion amplification factors [J]. Earthquake Spectra, 2019, 35(2): 907 − 928. doi: 10.1193/053118EQS131M
    [12]
    BOMMER J J, SCOTT S G. The feasibility of using real accelerograms for seismic design [C]// Proceedings of the 3rd Workshop on Implications of Recent Earthquakes on Seismic Risk. London: Imperial College, 2000: 115 − 126.
    [13]
    FEMA P695, Quantification of building seismic performance factors [S]. Washington: Federal Emergency Management Agency, 2008.
    [14]
    于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    YU Xiaohui. Probabilistic seismic fragility and risk analysis of reinforced concrete frame structures [D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
    [15]
    王东明, 高永武. 城市建筑群概率地震灾害风险评估研究[J]. 工程力学, 2019, 36(7): 165 − 173. doi: 10.6052/j.issn.1000-4750.2018.06.0331

    WANG Dongming, GAO Yongwu. Study on the probabilistic seismic disaster risk assessment of urban building complex [J]. Engineering Mechanics, 2019, 36(7): 165 − 173. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0331
    [16]
    吕大刚, 于晓辉, 王光远. 单地震动记录随机增量动力分析[J]. 工程力学, 2010, 27(增刊 1): 53 − 58.

    LYU Dagang, YU Xiaohui, WANG Guangyuan. Single-record random incremental dynamic analysis [J]. Engineering Mechanics, 2010, 27(Suppl 1): 53 − 58. (in Chinese)
    [17]
    韩鲁, 宋志强, 王飞, 等. 基于设计地震动的覆盖层场地空间自由场构建[J]. 工程力学, 2022, 39(7): 137 − 146. doi: 10.6052/j.issn.1000-4750.2021.04.0255

    HAN Lu, SONG Zhiqiang, WANG Fei, et al. Construction of free fields in bedrock-overburden site spaces based on designed ground motions [J]. Engineering Mechanics, 2022, 39(7): 137 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0255
    [18]
    吕红山, 赵凤新. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报, 2007, 29(1): 67 − 76. doi: 10.3321/j.issn:0253-3782.2007.01.008

    LYU Hongshan, ZHAO Fengxin. Site coefficients suitable to China site category [J]. Acta Seismologica Sinica, 2007, 29(1): 67 − 76. (in Chinese) doi: 10.3321/j.issn:0253-3782.2007.01.008
    [19]
    姚鑫鑫, 任叶飞, 岸田忠大, 等. 强震动记录的数据处理流程: 去噪滤波[J]. 工程力学, 2022, 39(增刊 1): 320 − 329. doi: 10.6052/j.issn.1000-4750.2021.05.S058

    YAO Xinxin, REN Yefei, KISHIDA T, et al. The procedure of filtering the strong motion record: Denoising and filtering [J]. Engineering Mechanics, 2022, 39(Suppl 1): 320 − 329. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.S058
    [20]
    袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10): 95 − 102, 122.

    YUAN Xiaoming, LI Ruishan, SUN Rui. A new generation method for earthquake response analysis of soil layers [J]. China Civil Engineering Journal, 2016, 49(10): 95 − 102, 122. (in Chinese)
    [21]
    STEELMAN J S, HAJJAR J F. Influence of inelastic seismic response modeling on regional loss estimation [J]. Engineering Structures, 2009, 31(12): 2976 − 2987. doi: 10.1016/j.engstruct.2009.07.026
    [22]
    韩博. 基于GPU-CPU协同计算的城市区域建筑震害预测[D]. 北京: 清华大学, 2014.

    HAN Bo. Seismic damage prediction for buildings in urban areas based on GPU-CPU cooperative computing [D]. Beijing: Tsinghua University, 2014. (in Chinese)
    [23]
    于晓辉, 吕大刚. HAZUS相容的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2016, 33(3): 152 − 160. doi: 10.6052/j.issn.1000-4750.2014.08.0685

    YU Xiaohui, LYU Dagang. Hazus-compatible seismic fragility analysis for RC frame structures [J]. Engineering Mechanics, 2016, 33(3): 152 − 160. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.08.0685
    [24]
    于晓辉, 吕大刚. 基于云图-条带法的概率地震需求分析与地震易损性分析[J]. 工程力学, 2016, 33(6): 68 − 76. doi: 10.6052/j.issn.1000-4750.2014.11.0998

    YU Xiaohui, LYU Dagang. Probabilistic seismic demand analysis and seismic fragility analysis based on a cloud-stripe method [J]. Engineering Mechanics, 2016, 33(6): 68 − 76. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.11.0998
    [25]
    SHOME N, CORNELL C A, BAZZURRO P, et al. Earthquakes, records, and nonlinear responses [J]. Earthquake Spectra, 1998, 14(3): 469 − 500. doi: 10.1193/1.1586011
    [26]
    Federal Emergency Management Agency (FEMA). Multi-hazard loss estimation methodology HAZUS –MH2.1 advanced engineering building module (AEBM) technical and user’s manual [R]. Washington: Federal Emergency Management Agency, 2012.
    [27]
    郑晓伟, 李宏男, 张营营, 等. 基于概率的高层建筑地震需求模型与风险评估[J]. 工程力学, 2022, 39(9): 31 − 39. doi: 10.6052/j.issn.1000-4750.2021.05.0329

    ZHENG Xiaowei, LI Hongnan, ZHANG Yingying, et al. Probabilistic seismic demand models and risk assessment for high-rise buildings [J]. Engineering Mechanics, 2022, 39(9): 31 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0329
    [28]
    ZHENG X W, LI H N, LV H L, et al. Bayesian-based seismic resilience assessment for high-rise buildings with the uncertainty in various variables [J]. Journal of Building Engineering, 2022, 51: 104321. doi: 10.1016/j.jobe.2022.104321
    [29]
    LUCO N, CORNELL C A. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions [J]. Earthquake Spectra, 2007, 23(2): 357 − 392. doi: 10.1193/1.2723158
    [30]
    BARROSO L R, WINTERSTEIN S. Probabilistic seismic demand analysis of controlled steel moment-resisting frame structures [J]. Earthquake Engineering & Structural Dynamics, 2002, 31(12): 2049 − 2066.
    [31]
    WEN Y K, ELLINGWOOD B R, VENEZIANO D, et al. Uncertainty modeling in earthquake engineering [R]. MAE Center Project FD-2 Report, Mid-America Earthquake Center (MAE), University of Illinois at Urbana-Champaign, Urbana, IL, 2003.

Catalog

    Article Metrics

    Article views (150) PDF downloads (56) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return