Citation: | JING Hong-miao, LI Wei-kang, CUI Sheng-nan, ZHANG Ji-tao, LIU Qing-kuan, LU Chuan. EFFECTS OF WIND DIRECTION ON AERODYNAMIC CHARACTERISTICS AND FLOW FIELD OF TWO TANDEM TAPERED SQUARE CYLINDERS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.06.0438 |
To further understand the effect of wind direction on the aerodynamic forces and flow fields of two tandem tapered square cylinders, three-dimensional (3D) large eddy simulations (LESs) of the flow around the two cylinders with a spacing ratio G/D = 4 (G is the cylinder center-to-center distance and D is the cylinder width) are conducted at Reynolds number (Re) = 2×103. The influence of the wind directions (α = 0°~45°) and tapered modifications (ξ = 0% and 5%) on flow regime, aerodynamic force coefficient and wind pressure distribution are comprehensively analyzed. The flow field is also investigated to reveal the variation and interference mechanism of the aerodynamic forces, then the mathematical relationship between the wind directions and the aerodynamic force coefficients is established. The results indicate that the flow structures can be divided into three flow regimes based on the wind direction: leading-edge separation (α = 0°), separation-bubble (α = 5°, 10°, and 15°) and attached-flow (α = 30° and 45°) regimes. There is an abrupt change in the mean and fluctuating force coefficients, as well as vortex shedding frequency of the two cylinders when the flow regime is transformed. The maximums of the fluctuating force coefficients and the vortex shedding intensity occur at α = 5°, while the vortex shedding frequency is the smallest. The shear layer and the wake vortex reattach on the surface of the downstream cylinder when the flow structures are in the leading-edge separation flow regime. The flow structures exhibit a skew feature in the attached-flow regime, which resulting in the variation in the aerodynamic forces with the wind direction. Meanwhile, the mean and fluctuating force coefficients, wind pressure coefficients, and vortex shedding intensity all decrease with the increase in taper ratio, however the vortex shedding frequency increases. It may be attributed to the narrower shear layer and the weaker periodicity and consistency of the vortex shedding.
[1] |
TAMURA Y, XU X D, YANG Q S. Characteristics of pedestrian-level Mean wind speed around square buildings: Effects of height, width, size and approaching flow profile [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 192: 74 − 87. doi: 10.1016/j.jweia.2019.06.017
|
[2] |
傅继阳, 吴玖荣, 徐安. 高层建筑抗风优化设计和风振控制相关问题研究[J]. 工程力学, 2022, 39(5): 13 − 33, 43. doi: 10.6052/j.issn.1000-4750.2021.08.ST07
FU Jiyang, WU Jiurong, XU An. Some issues on wind resistant optimization design and on wind-induced vibration control of tall buildings [J]. Engineering Mechanics, 2022, 39(5): 13 − 33, 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.ST07
|
[3] |
郑肖楠, 崔会敏, 刘庆宽. 超高层建筑表面风压及行人风环境研究[J]. 工程力学, 2021, 38(增刊1): 223 − 227. doi: 10.6052/j.issn.1000-4750.2020.05.S040
ZHENG Xiaonan, CUI Huimin, LIU Qingkuan. Study on surface wind pressure and pedestrian wind environment of super high-rise buildings [J]. Engineering Mechanics, 2021, 38(Suppl 1): 223 − 227. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S040
|
[4] |
LIU J Y, HUI Y, YANG Q S, et al. Numerical study of impact of façade ribs on the wind field and wind force of high-rise building under atmospheric boundary layer flow [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2023, 236: 105399. doi: 10.1016/j.jweia.2023.105399
|
[5] |
HUI Y, TAMURA Y, YOSHIDA A, et al. Pressure and flow field investigation of interference effects on external pressures between high-rise buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 115: 150 − 161. doi: 10.1016/j.jweia.2013.01.012
|
[6] |
BAMU P C, ZINGONI A. Damage, deterioration and the long-term structural performance of cooling-tower shells: A survey of developments over the past 50 years [J]. Engineering Structures, 2005, 27(12): 1794 − 1800. doi: 10.1016/j.engstruct.2005.04.020
|
[7] |
沈国辉, 王宁博, 楼文娟, 等. 渡桥电厂冷却塔倒塌的塔型因素分析[J]. 工程力学, 2012, 29(8): 123 − 128. doi: 10.6052/j.issn.1000-4750.2010.11.0852
SHEN Guohui, WANG Ningbo, LOU Wenjuan, et al. Analysis of tower shape factor in the collapse of the ferrybridge cooling towers [J]. Engineering Mechanics, 2012, 29(8): 123 − 128. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.11.0852
|
[8] |
JING H M, MA W Y, ZHANG Z. Numerical study on aerodynamic characteristics and flow field of a circular cylinder equipped with a C-ring behind at Re = 1000 [J]. Advances in Structural Engineering, 2023, 26(11): 2055 − 2072. doi: 10.1177/13694332231181057
|
[9] |
顾明, 张正维, 全涌. 降低超高层建筑横风向响应气动措施研究进展[J]. 同济大学学报(自然科学版), 2013, 41(3): 317 − 323. doi: 10.3969/j.issn.0253-374x.2013.03.001
GU Ming, ZHANG Zhengwei, QUAN Yong. Aerodynamic measures for mitigation of across-wind responses of super tall buildings: State of the art [J]. Journal of Tongji University (Natural Science), 2013, 41(3): 317 − 323. (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.03.001
|
[10] |
SHARMA A, MITTAL H, GAIROLA A. Mitigation of wind load on tall buildings through aerodynamic modifications: Review [J]. Journal of Building Engineering, 2018, 18: 180 − 194. doi: 10.1016/j.jobe.2018.03.005
|
[11] |
ALAM M D M, MORIYA M, TAKAI K, et al. Suppression of fluid forces acting on two square prisms in a tandem arrangement by passive control of flow [J]. Journal of Fluids and Structures, 2002, 16(8): 1073 − 1092. doi: 10.1006/jfls.2002.0458
|
[12] |
SAKAMOTO H, HAINU H, OBATA Y. Fluctuating forces acting on two square prisms in a tandem arrangement [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1987, 26(1): 85 − 103. doi: 10.1016/0167-6105(87)90037-7
|
[13] |
LIU C H, CHEN J M. Observations of hysteresis in flow around two square cylinders in a tandem arrangement [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(9): 1019 − 1050. doi: 10.1016/S0167-6105(02)00234-9
|
[14] |
YEN S C, SAN K C, CHUANG T H. Interactions of tandem square cylinders at low Reynolds numbers [J]. Experimental Thermal and Fluid Science, 2008, 32(4): 927 − 938. doi: 10.1016/j.expthermflusci.2007.07.001
|
[15] |
樊晓羽, 秦浩, 商敬淼, 等. 串列双方柱干扰效应流动机理研究[J]. 振动与冲击, 2020, 39(8): 230 − 238, 244.
FAN Xiaoyu, QIN Hao, SHANG Jingmiao, et al. Flow mechanism investigation on interference effect of two square cylinders in tandem arrangement [J]. Journal of Vibration and Shock, 2020, 39(8): 230 − 238, 244. (in Chinese)
|
[16] |
SOHANKAR A. A numerical investigation of the flow over a pair of identical square cylinders in a tandem arrangement [J]. International Journal for Numerical Methods in Fluids, 2012, 70(10): 1244 − 1257. doi: 10.1002/fld.2739
|
[17] |
Du X, Xu Q, Dong H, et al. Physical mechanisms behind the extreme wind pressures on two tandem square cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 231: 105249.
|
[18] |
YOON D H, YANG K S, CHOI C B. Flow past a square cylinder with an angle of incidence [J]. Physics of Fluids, 2010, 22(4): 043603. doi: 10.1063/1.3388857
|
[19] |
YEN S C, YANG C W. Flow patterns and vortex shedding behavior behind a square cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(8): 868 − 878. doi: 10.1016/j.jweia.2011.06.006
|
[20] |
SOHANKAR A, MOHAGHEGHIAN S, DEHGHAN A A, et al. A smoke visualization study of the flow over a square cylinder at incidence and tandem square cylinders [J]. Journal of Visualization, 2015, 18(4): 687 − 703. doi: 10.1007/s12650-015-0275-0
|
[21] |
DU X Q, XU H L, MA W Y, et al. Experimental study on aerodynamic characteristics of two square cylinders at various incidence angles [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191: 154 − 169. doi: 10.1016/j.jweia.2019.05.019
|
[22] |
BAI H L, ALAM M M. Dependence of square cylinder wake on Reynolds number [J]. Physics of Fluids, 2018, 30(1): 015102. doi: 10.1063/1.4996945
|
[23] |
KIM Y M, YOU K P. Dynamic responses of a tapered tall building to wind loads [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 1771 − 1782.
|
[24] |
KIM Y C, KANDA J. Wind pressures on tapered and set-back tall buildings [J]. Journal of Fluids and Structures, 2013, 39: 306 − 321. doi: 10.1016/j.jfluidstructs.2013.02.008
|
[25] |
DENG T, YU X F, XIE Z N. Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings [J]. Wind and Structures, 2015, 21(3): 331 − 352. doi: 10.12989/was.2015.21.3.331
|
[26] |
SHARMA A, MITTAL H, GAIROLA A. Aerodynamics of tapered and set-back buildings using detached-eddy simulation [J]. Wind and Structures, 2019, 29(2): 111 − 127.
|
[27] |
SHARMA A, MITTAL H, GAIROLA A. Wind-induced forces and flow field of aerodynamically modified buildings [J]. Environmental Fluid Mechanics, 2019, 19(6): 1599 − 1623. doi: 10.1007/s10652-019-09687-9
|
[28] |
LI Y, ZHU Y, CHEN F B, et al. Aerodynamic loads of tapered tall buildings: Insights from wind tunnel test and CFD [J]. Structures, 2023, 56: 104975. doi: 10.1016/j.istruc.2023.104975
|
[29] |
LI Y, SONG Q, LI C, et al. Reduction of wind loads on rectangular tall buildings with different taper ratios [J]. Journal of Building Engineering, 2022, 45: 103588. doi: 10.1016/j.jobe.2021.103588
|
[30] |
ZHANG J T, JING H M, HAN M J, et al. Effects of taper ratio on the aerodynamic forces and flow field of two tandem square cylinders [J]. Physics of Fluids, 2023, 35(10): 105152. doi: 10.1063/5.0169908
|
[31] |
RODI W, FERZIGER J H, BREUER M, et al. Status of large eddy simulation: Results of a workshop [J]. Journal of Fluids Engineering, 1997, 119(2): 248 − 262. doi: 10.1115/1.2819128
|
[32] |
ZHANG Z, WANG J Z, HUANG R F, et al. Data-driven turbulence model for unsteady cavitating flow [J]. Physics of Fluids, 2023, 35(1): 015134. doi: 10.1063/5.0134992
|
[33] |
沈宏涛, 胡伟成, 刘海坤, 等. 高边坡复杂地形下风电机组机位的湍流风场研究[J]. 工程力学, 2023, 40: 1 − 10.
SHEN Hongtao, HU Weicheng, LIU Haikun, et al. Study on turbulent wind field of wind turbine site in high-slope complex terrain [J]. Engineering Mechanics, 2023, 40: 1 – 10. (in Chinese)
|
[34] |
NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow, Turbulence and Combustion, 1999, 62(3): 183 − 200. doi: 10.1023/A:1009995426001
|
[35] |
于春放, 靖洪淼, 张记涛, 等. 不同雷诺数下4∶1圆角矩形柱气动力特性及流场数值模拟研究[J]. 工程力学, 2024, 41(增刊1): 332 − 338. doi: 10.6052/j.issn.1000-4750.2023.05.S017
YU Chunfang, JING Hongmiao, ZHANG Jitao, et al. LES study on aerodynamic characteristics and flow field of a 4∶1 rectangular cylinder with different Reynolds numbers [J]. Engineering Mechanics, 2024, 41(Suppl 1): 332 − 338. (in Chinese) doi: 10.6052/j.issn.1000-4750.2023.05.S017
|
[36] |
FRANKE J, FRANK W. Large eddy simulation of the flow past a circular cylinder at Re D=3900 [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10): 1191 − 1206. doi: 10.1016/S0167-6105(02)00232-5
|
[37] |
杜晓庆, 陈丽萍, 董浩天, 等. 串列双方柱的风压特性及其流场机理[J]. 湖南大学学报(自然科学版), 2021, 48(3): 109 − 118.
DU Xiaoqing, CHEN Liping, DONG Haotian, et al. Wind pressure characteristics and flow mechanism of two tandem square columns [J]. Journal of Hunan University (Natural Sciences), 2021, 48(3): 109 − 118. (in Chinese)
|
[38] |
RODI W. Comparison of LES and RANS calculations of the flow around bluff bodies [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69/70/71: 55 − 75.
|
[39] |
CAO S Y, ZHOU Q, ZHOU Z Y. Velocity shear flow over rectangular cylinders with different side ratios [J]. Computers & Fluids, 2014, 96: 35 − 46.
|
[40] |
ZHOU Q, ALAM M M, CAO S Y, et al. Numerical study of wake and aerodynamic forces on two tandem circular cylinders at Re = 103 [J]. Physics of Fluids, 2019, 31(4): 045103. doi: 10.1063/1.5087221
|
[41] |
WANG P Y, ZHOU Q, ALAM M M, et al. Effects of streamwise gust amplitude on the flow around and forces on two tandem circular cylinders [J]. Ocean Engineering, 2022, 261: 112040. doi: 10.1016/j.oceaneng.2022.112040
|
[42] |
JING H M, ZHANG J T, LIU Q K, et al. LES study of flow field and aerodynamic forces on a circular cylinder at Re = 3900 with focus on grid resolution [J]. Wind and Structures, 2023, 36(2): 175 − 200.
|
[43] |
张航, 唐浩俊, 莫威, 等. 双矩形拱肋间的气动干扰效应研究[J]. 工程力学, 2023, 40(6): 131 − 143. doi: 10.6052/j.issn.1000-4750.2021.11.0889
ZHANG Hang, TANG Haojun, MO Wei, et al. Research on aerodynamic interference between two arch ribs with rectangle cross sections [J]. Engineering Mechanics, 2023, 40(6): 131 − 143. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.11.0889
|
[44] |
闫渤, 李欢, 李玲瑶, 等. 扁平箱梁阻力波动现象及其潜在机理[J]. 工程力学, 2023: 1 − 10.
YAN Bo, LI Huan, LI Lingyao, et al. Drag fluctuations of flat box girder and its undeilying flow mechanism [J]. Engineering Mechanics, 2023, 1 − 10. (in Chinese)
|
[45] |
NORBERG C. Flow around rectangular cylinders: Pressure forces and wake frequencies [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1/2/3): 187 − 196.
|
[46] |
LYN D A, EINAV S, RODI W, et al. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder [J]. Journal of Fluid Mechanics, 1995, 304: 285 − 319. doi: 10.1017/S0022112095004435
|
[47] |
LUO S C, YAZDANI M G, CHEW Y T, et al. Effects of incidence and afterbody shape on flow past bluff cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 53(3): 375 − 399. doi: 10.1016/0167-6105(94)90092-2
|
[48] |
SOHANKAR A, DAVIDSON L, NORBERG C. Large eddy simulation of flow past a square cylinder: Comparison of different subgrid scale models [J]. Journal of Fluids Engineering, 2000, 122(1): 39 − 47. doi: 10.1115/1.483224
|
[49] |
CAO Y, TAMURA T. Large-eddy simulations of flow past a square cylinder using structured and unstructured grids [J]. Computers & Fluids, 2016, 137: 36 − 54.
|
[50] |
SHANG J M, ZHOU Q, ALAM M M, et al. Numerical studies of the flow structure and aerodynamic forces on two tandem square cylinders with different chamfered-corner ratios [J]. Physics of Fluids, 2019, 31(7): 075102. doi: 10.1063/1.5100266
|
[51] |
JING H M, LI W K, SU Y, et al. Numerical study of wind characteristics at a long-span bridge site in mountain valley [J]. Physics of Fluids, 2024, 36(3): 035131. doi: 10.1063/5.0196221
|
[52] |
闫渤文, 丁文浩, 魏民, 等. 偏转风作用下方形截面超高层建筑风效应研究[J]. 工程力学, 2023, 40: 1 − 13.
YAN Bowen, DING Wenhao, WEI Min, et al. Investigation of twisted wind effect on a square-sectional super-tall building [J]. Engineering Mechanics, 2023, 40: 1 − 13. (in Chinese)
|