MODIFICATION OF CALCULATING UNSTEADY AERODYNAMIC CHARACTERISTICS OF WIND TURBINE BLADES
-
Graphical Abstract
-
Abstract
A rational calculating method for the unsteady aerodynamic characteristics of the wind turbine blades is presented in this paper. By modifying the unsteady aerodynamic and dynamic stall model, the classical momentum-blade element theory is improved to account for yaw effect in a quasi-steady manner for wind turbines, and then the two-dimensional (2-D) results are deduced. While the three-dimensional (3-D) rotational effect which changes the blade aerodynamic characteristics greatly compared to its non-rotating counterpart is not considered in the 2-D model. Based on the 2-D model, the effects of the centrifugal pumping and Coriolis force on the flow separation under the turbulence condition are analyzed, and the analytical relationship between the 3-D rotational effect and the flow separation are obtained, which is coupled to the 2-D model to give the 3-D results. Both the calculated 2-D and 3-D results are compared with experimental data at different wind velocities and yawed angles of the wind turbine, showing that the calculation is improved by the inclusion of the 3-D rotational effects.
-
-